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Optimization |

f' Concept Questions I page 313

1.

2.

a. A function f has an absolute maximum at « if f (x) < f (a) for all x in the domain of f.

b. A function f has an absolute minimum at @ if f (x) > f (a) for all x in the domain of f.

See the procedure given on page 307 of the text.

Exercises | page 313

1,

[

10.

11.

12.

13.

J has no absolute extremum.

has an absolute minimum at {—2, —1 ) and an absolute maximum at 2,1).
2 2

. f has an absolute minimum at (0, 0).
./ has an absolute minimum at (0, 0) and no absolute maximum.
. f has an absolute minimum at (0, —2) and an absolute maximum at (1, 3),

. f has no absolute extremum.

3

. f has an absolute minimum at (7, ——%%) and an absolute maximum at (-1, 3).

. f has an absolute minimum at (0, —3) and an absolute maximum at (3, 1).

. The graph of f (x) = 2x? 4 3x — 4 is a parabola that opens upward. Therefore, the vertex of the parabola is the

absolute minimum of /. To find the vertex, we solve the equation f” (x) = 4x + 3 = 0, finding x = —%. We

conclude that the absolute minimum value is f (—%) = —,18]—.

The graph of g (x) = —x? + 4x + 3 is a parabola that opens downward. Therefore, the vertex of the parabola is the
absolute maximum of f. To find the vertex, we solve the equation g’ (x) = —2x + 4 = 0, finding x = 2. We
conclude that the absolute maximum value is f (2) = 7.

Because lim x!/3
X——00

extremuin.

= —oo and l_i)m %13 = oo, we see that / is unbounded. Therefore, it has no absolute
X o0 .

From the graph of f (see Figure 15(b) on page 259 of the text), we see that (0, 0) is an absolute minimum of 7.
There is no absolute maximum because lim x2/3 = oo.
o0

fx)= gt Using the techniques of graphing, we sketch the graph of f (see Figure 40 on page 278 of the

text). The absolute maximum of f is f (0) = 1. Alternatively, observe that 1 +x2 > 1 for all real values of x.
Therefore, f (x) < 1 for all x, and we see that the absolute maximum is attained when x = 0.
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14.

15.

16.

17.

18.

19.

20.

F@ =1

we use the graphical method. Using the techniques of

Because f is defined for all x in (—o0, 00),

graphing, we sketch the graph of f. From the graph we see

that f has an absolute maximum at (1, %) and an absolute

minimum at (——1, ——%)

fx)=x*-2x—3and f/(x) =2x—2=0,s0x = lisa
critical number. From the table, we conclude that the absolute
maximum value is f (—2) = 5 and the absolute minimum
value is f (1) = —4.

g(x) =x%—2x —3,s50 g (x) = 2x — 2 = 0 implies that

x = 1 is a critical number, From the table, we conclude that g
has an absolute minimum at (1, —4) and an absolute maximum
at (4, 5).

f (x) = —x? 4 4x + 6; The function f is continuous and
defined on the closed interval [0, 5]. /' (x) = —2x + 4, and so
x = 2 is a critical number, From the table, we conclude that

£ (2) = 10 is the absolute maximum value and f (5) = 1 is
the absolute minimum value.

f (x) = —x? + 4x + 6; The function f is continuous and
defined on the closed interval [3, 6]. /' (x) = —2x + 4, s0

x = 2 is a critical number, But this point lies outside the given
interval. From the table, we conclude that f (3) = 9 is the
absolute maximum value and f (6) = —6 is the absolute
minimum value,

y
0.4
0.2
2 4 6x
x -2 113
& 51410
X 0 114
fx)| -3 -4
X 0 215
) 161101
X 3 6
fx19) —6

The function f (x) = x> 4 3x% — 1 is continuous and defined on the closed interval [—3, 2] and differentiable in
(=3, 2). The critical numbers of f are found by solving f/ (x) = 3x? 4 6x = 3x (x 4 2) = 0, giving x = —2 and

x = 0. From the table, we see that the absolute maximum
value of f is f (2) = 19 and the absolute minimum value is

S =50)=-1

X -3

-2

0

2

S| -1

3

-1

19

The function g (x) = x> + 3x2 — 1 is continuous on the closed interval [—3, 1] and differentiable in (=3, 1). The

critical numbers of g are found by solving g’ (x) = 3x2 + 6x = 3x (x +2) =0, givingx = —2 and x = 0.

From the table we see that the absolute maximum value of g is
g (1) = g (—=2) = 3 and the absolute minimum value of g is

g(-3)=g0)=-1

X -3

-2

gx) | —1

3




21.

22,

23,

24.

25.

26.

27.
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The function g (x) = 3x* 4 4x3 is continuous on the closed interval [—2, 1] and differentiable in (—2, 1). The
critical numbers of g are found by solving g’ (x) = 12x3 4 12x? = 12x2 (x + 1) = 0, giving x =0 and x = —1.

From the table, we see that g (—2) = 16 is the absolute

maximum value of g and g (—1) = —1 is the absolute * -2 -11071

minimum value of g. gx)l 16| -110}7

f(x) = $x* — 2x3 — 2x? + 3 is continuous on the closed interval [-2, 3] and
differentiable in the open interval (—2, 3). The critical numbers of f are found by solving
f1e)=2x3 —2x2 —4x =2x (x> —x —2) = 2x (x = 2) (x + 1) = 0, giving x = —1, 0, and 2 as critical

numbers. From the table we see that the absolute maximum

value of fis f (=2) = 23-5— and the absolute minimum value of * 2|10} 2 3
25 | 13 _Il L
fis f(@)=-L |1 3| % 313
1 O nQa 2
fx)= s on [2, 4]. Next, we compute /' (x) = =DM (x2—|- ) () = - 5 Because there is no
x =1 -1 -1

critical number (x = 1 is not in the domain of f), we need only test the endpoints. We conclude that f (4) = % is
the absolute minimum value and f (2) = 3 is the absolute maximum value.

L _=D-t__
0= Tps0g =" — =~

of g), we need only test the endpoints. We conclude that g (2) = 2 is the absolute maximum value and g (4) = % is

Because there is no critical number (# = 1 is not in the domain
the absolute minimum value.

1
f (x) = 4x + — is continuous on [1, 4] and differentiable in (1, 4). To find the critical numbers of f, we solve
x

1
ffx)y=4- = 0, obtaining x = :t%. Because these critical numbers lie outside the interval [1, 4], they are not

candidates for the absolute extrema of f. Evaluating f at the endpoints of the interval [1, 4], we find that the
absolute maximum value of f is f (4) = %, and the absolute minimum value of fis f (1) =5.

1
f (x) = 9x — — is continuous on [1, 3] and differentiable in (1, 3). To find the critical numbers of f, we solve
X

fx)=9+ )—(17 = 0, obtaining x> = -—% which has no solution. Evaluating f at the endpoints of the interval [1, 3],

we find that the absolute minimum value is f (1) = 8 and the absolute maximum value is f (3) = %.

/() = 3x? = 2/x = 1x? — 2x'/2. To find the critical

numbers of £, we solve f/ (x) =x —x~1/2 =0, or

g —2/3~1.04

L

S 0] -

x3/2 — 1 = 0, obtaining x = 1. From the table, we conclude

that f (3) = 1.04 is the absolute maximum value and

JS)= —% is the absolute minimum value.
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28. The function g (x) = $x% — 4,/% = 1x? — 4x'/2 is continuous on the closed interval [0, 9] and differentiable in

29,

31.

32.

33.

34.

(0, 9). To find the critical numbers of g, we first compute g’ (x) = x —2x~1/2 = Jx71/2 (x3/2 - 8). Seiting

g’ (x) = 0, we have x*/2 = 8, or x = 4. From the table, we
conclude that g (4) = —6 is the absolute minimum value and
g (0) = 0 is the absolute maximum value of g.

y 30.

—_ N W

O 1 234567«x
1
From the graph of f(x):;forx> 0, we

conclude that f has no absolute extremum.

f (x) = 3x%/3 — 2x. The function f is continuous on [0, 3]
and differentiable on (0, 3). To find the critical numbers of f,
we solve f7 (x) = 2x~1/3 =2 =0, obtaining x = 1 as the
critical number, From the table, we conclude that the absolute
maximum value is f (1) = 1 and the absolute minimum value

is £ (0) = 0.

g (@) =x242x*3 s0
g (x) =2x + 33713 = 25713 (3x4/3 4 2) is never zero, but
g’ (x) is not defined at x = 0, which is a critical number of g.

From the table, we conclude that g (—2) = g (2) = 4 4 2°/3
give the absolute maximum value and g (0) = 0 gives the
absolute minimum value.

f ) =x23 (x2 - 4), 50 f} () =x¥? @x)+ 3x71B (52 —4) = 32713 3x2 + (x2 — 4)] =

x 0 4 9
f@ o) —6|=-L
y
1
o155 a5 s 7
From the graph of g (x) = forx > 0, we

x+1
conclude that g has no absolute extremum,

X 1 3

FE)[0|1]3P-6~024

x -2 0 2

gx) | 44293 |0 | 442/
8(x2—1) 0
3x1/3 -

Observe that f* is not defined at x = 0. Furthermore, f* (x) = 0 at x% 1. So the critical numbers of f are —1 and 0,

and 1, From the table, we see that f has absolute minima at
(—1, =3) and (1, —3) and absolute maxima at (0, 0) and
(2,0).

The function is the same as that of Exercise 33. From the
table, we see that f has a absolute minima at (—1, —3) and

(1, —3) and an absolute maximum at (3, 5 - 32/3).

X 1|0 1]2
fx)| =310 =310
X -1 1 3
f@x) | -3 -3 |5.3%3
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36.

37.

38.

39.

40.
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24+2) —x (2 2—x?
S = _2x__ To find the critical numbers of £, we solve f' (x) = (x + ) x2( ) = al 5 =
x4 +2 (x2 +2) (x2 +2)

obtaining x = ++/2. Because x = —+/2 lies outside [—1, 2], x = +/2 is the only critical number in the given

interval.
From the table, we conclude that f («/f) = @ ~ 0.35 is the

. x -1 V2 2
absolute maximum value and f (—1) = —~ is the absolute
- fED="3 fo) | -1 L~o3s |t
minimum value.
d ~ - -2 1
@) =— (x*+2x +5) g —(x*+2x+5) Zx+2) = ———w—z Setting /7 (x) = 0 gives
dx (x2+2x +5) '
x = —1 as a critical number. From the table, we see that f has
x =21 =111
an absolute minimum at (1, %) and an absolute maximum at . 0 7
S® 1 s | 3|3
—1. 1
) 4 M
The function f (x) = il = ad 175 i continuous on the closed interval
X+l (24 1)Y
[—1, 1] and differentiable on (—1, 1). To find the critical numbers of f, we first compute
1/2 . 12
R MO ) R I G N S i e .
)= 5 = 5 = 3/2,WhICh is
[(x2+1)1/2] ' X +1 2 +1)**"
never equal to zero. We compute f (x) at the endpoints, and conclude that f (—1) = —4 is the absolute minimum
value and f (1) = @ is the absolute maximum value.
g)=x(4- x2)]/2 on [0, 2], so
- _ 2(x2 -2
g ) =(@-x)"4x (%) @=x2)" () = (4 =x)) T (4 —x2 - x?) = _262-2)
4 — x2
The critical number of g in (0, 2) is +/2. From the table, we
X 02

conclude that g (ﬁ) = 2 is the absolute maximum value and

gx)

g (0) = g (2) = 0 is the abselute minimum value.

h(t) = —16¢% + 64¢ + 80. To find the maximum value of /, we solve h*(t) = —32¢ + 64 = =32 (t —2) = 0,
giving ¢ = 2 as the critical number of 4. Furthermore, this value of 7 gives rise to the absolute maximum
value of /4 since the graph of % is a parabola that opens downward. The maximum height is given by

h(2) = —16 (4) + 64 (2) + 80 = 144, or 144 feet.

P (x) = —10x% + 1760x — 50,000, so P’ (x) = —20x + 1760 = 0 if x = 88, and this is a critical number of P.
Now P (88) = —10 (88)* + 1760 (88) — 50,000 = 27,440. The graph of P is a parabola that opens downward, so
the point (88, 27440) is an absolute maximum of P. The maximum monthly profit is $27,440, when 88 units are
rented out.
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41.

42,

43.

44,

45.

46.

47.

f (@) =0.13612 4+ 0.127¢ + 18.1, 50 f' (t) = 0.272¢ 4 0.127. Setting
S (#) = 0 gives 0.272¢ = —0.127, so ¢t ~ —0.467. This value of 7 lies
outside the interval [0, 4], so f has no critical number on that interval. S @) | 18.1 | 20.784
From the table, we conclude that the lowest and highest strikeout rates are

18.1% and 20.8%, occurring in 2009 and 2013 respectively.

N (t) = —2.65¢2 + 13.13t + 39.9, s0 N’ (t) = —5.3¢ + 13.13. Setting
f (@) =0gives 5.3r = 13.13, so t &~ 2.48 is a critical number of N. From ! 0 2.5 4
the table, we see that global iPod sales peaked at this value of 7, in N(r) | 399 | 56.2 | 50.02
mid-2009, at a sales level of approximately 56.2 million units.

Observe that f is continuous on [0,4]. Next, we compute
V=1
NG

critical number of f in (0, 4). Because f (0) = 50, f (1) = 30, and f (4) = 50, we conclude that f attains its
minimum value of 30 at # = 1. This tells us that the traffic is moving at the slowest rate at 7 a.m. and the average

fl= % (201 — 401172 4 50) =20 — 201712 = 20,12 (112 — 1) = 20 . Observe that / = 1 is the only

speed of a vehicle at that time is 30 mph.

100,000 100,000x
i = = 2 — 1 = T 1
The revenue is R (x) px (250 p ) 250 £ x 00x, so
250 D—-x( 25,000,000 ) ,
R (x) = 100,000 - @0+xHM) - M) 100 = ——— — 100. Setting R’ (x) = 0 gives

(250 + x)? T (250 4 x)?
25,000,000 = 100 (250 + x)?, 50 250 + x = ==+/250,000 = +500; that is, x = —750 or 250.
Thus, R has the critical number 250 on the interval [0, 750]. From the

table, we see that selling 250 handbags per day gives the maximum daily x 0| 25 |750
profit of $25,000. R(x)|0]25000]| 0
h(t) =38 + 42 +20t + 2,500/ (£) = =12 + 81 +20 = — (12 ~ 81 —=20) = — (¢t — 10) (1 +2) = 0 if

t = —2 or t = 10. Rejecting the negative root, we take 1 = 10. Next, we compute #” (t) = —2¢ + 8. Because
A" (10) = ~20 + 8 = —12 < 0, the Second Derivative Test indicates that the point + = 10 gives a relative
maximum. From physical considerations, or from a sketch of the graph of 4, we conclude that the rocket attains
its maximum altitude at # = 10 with a maximum height of  (10) = —1 (10)* + 4 (10)? + 20 (10) + 2, or '
approximately 268.7 fi.

P (x) = —0.000002x> 4 6x — 400, so P’ (x) = —0.000006x2 + 6 = 0 if x = + 1000. We reject the negative
root, Next, we compute P” (x) = —0.000012x. Because P” (1000) = —0.012 < 0, the Second Derivative
Test shows that x = 1000 gives a relative maximum of f. From physical considerations, or from a sketch

of the graph of f, we see that the maximum profit is realized if 1000 cases are produced per day. That profit is
P (1000) = —0.000002 (1000)> + 6 (1000) — 400, or $3600/day.

The revenue is R (x) = px = —0.00042x?> 4+ 6x. Therefore, the profit is
P (x) = R(x) = C (x) = —0.00042x2 + 6x — (600 + 2x — 0.00002x%) = —0.0004x2 + 4x — 600.

P’ (x) = —0.0008x + 4 = 0 if x = 5000, a critical number of
P. From the table, we see that Phonola should produce 5000 X 0 | 5000 12,000
discs/month., P(x) | —600 | 9400 | —10,200




48,

49,

50.

51,

52.
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The revenue is R (x) = px = —0.0004x% + 10x and the profit is

P (x) = R(x) — C (x) = —0.0004x> + 10x — (400 4 4x + 0.0001x%) = —0.0005x2 + 6x — 400.

P’ (x) = =0.001x + 6 = 0 if x = 6000, a critical number. Because P” (x) = —0.001 < 0 for all x, we see that the
graph of P is a parabola that opens downward. Therefore, a level of production of 6000 rackets/day will yield a
maximum profit.

The cost function is C (x) = V (x) + 20,000 = 0.000001x> — 0.01x% + 50x + 20,000, so the profit function is
P (x) = R (x) — C (x) = —0.02x? 4 150x — 0.000001x> 4 0.01x? — 50x + 20,000
= —0.000001x> — 0.01x2 + 100x — 20,000.

We want to maximize P on [0, 7000]. P’ (x) = —0.000003x? — 0.02x + 100. Setting P’ (x) = 0 gives
—20,000 = \/20,0002 + 1,200,000,000

3x2 4 20,000x — 100,000,000 = 0, so or x = ; = —10,000 or 3,333.33.
Thus, x = 3333.33 is a critical number in the interval

[0, 7500]. From the table, we see that a level of production of x 0| 3333.33 7500
3,333 pagers per week will yield a maximum profit of P (x) | —20,000 | 165,185.2 | —254,375

$165,185.20 per week.

R(x)=px =-0. 05x2 + 600x, so
P (x) = R(x) — C (x) = —0.05x% + 600x — (0.000002x3 - 0.03x% 4 400x + 80,000)
= —0.000002x3 — 0.02x2 + 200x — 80,000.

We want to maximize P on [0, 12000]. P’ (x) = —0.000006x2 — 0.04x + 200, so setting P’ (x) = 0 gives
—20,000 = /20,0002 + 1,200,000,000

3x2 4-20,000x — 100,000,000 = 0 or x = < — = —10,000
or 3333.3. Thus, x = 3333.3 is a critical number in the
interval [0, 12000]. From the table, we see that a level of N 0 3333 12,000
production of 3333 units will yield a maximum profit. P (x) | —80,000 | 290,370 | —4,016,000
The cost function is C (x) = 0.2 (0.01x2 + 120) and the average cost function is

C 120
Cx)= ix) = 0.2 (0.01x + —)—C—) = 0.002x + . To find the minimum average cost, we first compute

— 24 — 24 24
C' (x) = 0.002 — =. Setting C’ (x) = 0 gives 0.002 — = =0, s0 x2 = ——— = 12,000, and thus x =~ +110. We
x2 x2 0.002

reject the negative root, leaving x = 110 as the only critical number of C (x). Because C” (x) = 48x~3 > 0 for all
x > 0, we see that C (x) is concave upward on (0, 0o). We conclude that C (110) & 0.44 is the absolute minimum
value of C (x) and that the average cost is minimized when x = 110 units.

C 10,000
a. Clr)=—22 (x) = 0.0025x + 80 + ——.
— 10,000 . — 20,000
b. C'(x) = 5 = . 2 = 10,000, or x = 2000. Because C" (x) = ——, we see that
x
C" (x) > 0 forx > 0and so C is concave upward on (0, o). Therefore, x = 2000 yields a minimum.
10,000

¢. We solve C (x) = C’ (x): 0.0025x + 80 + ——— = 0.005x + 80, s0 0.0025x2 = 10,000 and x = 2000.
x

d. Tt appears that we can solve the problem in two ways,
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— C(x 400
53. a. C (x) = 0.000002x> + 5x + 400, s0 C (x) = ——)—E——) = 0.000002x2 + 5 + —
400 0.000004x> —400  0.000004 (x3 — 100,000,000 L=
b. €' (x) = 0.000004x — =z = xj = (x o) ) Setting C’ (x) = 0 gives

— — 800 —=
x = 464, the only critical number of C. Next, c” (x) = 0.000004 + —, so C” (464) > 0 and by the Second
x3 Y

Derivative Test, the point x = 464 gives rise to a relative minimum. Because C” (x) > 0 forallx > 0, C is
concave upward on (0, co) and x = 464 gives rise to an absolute minimum of C. Thus, the smallest average
product cost occurs when the level of production is 464 cases per day.

400
¢. We want to solve the equation C (x) = C’ (x), that is, 0.000002x2 4+ 5§ + — = 0.000006x% + 5, s0

0.000004x3 = 400, x> = 100,000,000, and x = 464

d. The results are as expected.

xC'(x) — C(x)

—
soC (x) = )

54. C (x) = = 0. This implies that xC’ (x) — C (x) = x2, so

€@ _ o,
X

. . Co Cx) .
This shows that at a level of production where the average cost is minimized, the average cost () is equal to the

marginal cost C’ (x).

_ c 10,000
55. 2. T (x) = =) — 0.0025x + 80 + 209

b. Using the result of Exercise 54, we set = C (x) = C’ (x), obtaining

10,000
0.0025x + 80 + — = = 0.005x + 80. This is the same equation obtained in Exercise 52(b). The lowest

C (x)
x

average production cost occurs when the production level is 2000 cases per day.
¢. The average cost is equal to the marginal cost when the production level is 2000 cases per day.

d. They are the same, as expected.

56. The demand equation is p = /800 — x = (800 — x)'/2, so the revenue function is R (x) = xp = x (800 — x)!/2,
To find the maximum of R, we compute

R'(x) = % (800 — x)™1/2 (=1) (x) + (800 ~ x)1/2 = 1 (800 — x) 172 [—x +2 (800 — x)]
= 1 (800 — x)~1/2 (1600 — 3x).

Next, R’ (x) = 0 implies x = 800 or x = 3%99, the critical numbers of R.

From the table, we conclude that R (1600) = 8709 is the —
x 0| 800 | &=
3

Rx) |[0]| 0 |8709

absolute maximum value. Therefore, the revenue is maximized

by producing 5~ 1600 a2 533 dresses.
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58.

59.
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50
The revenue function is R (x) = xp = a)lx;—-l—l To find the maximum value of R, we compute
(0.01x2 + 1) 50 — 50x (0.02x) 0.5 (x> — 100) ’ o
R (x)= 5 =— 5. Now R’ (x) = 0 implies x = —10, orx = 10. The
(0.01x2 + 1) (0.01x2 4 1)

first root is rejected since x must be greater than or equal to zero. Thus, x = 10 is the only critical number,

From the table, we conclude that R (10) = 250 is the absolute

maximum value of R. Thus, the revenue is maximized by X 10] 20
selling 10,000 watches. R{x) | 0] 250 | 200
A() = 136[1+025(¢ —4.52]" + 28, so

_ 68(t—4.5
A (1) =136 (=1)[1+025( — 4.5)2] 2 0.25)2(t —4.5)=— ¢ ) 5

[1+0.25@ —4.5)7]

Setting A’ (1) = 0 gives ¢ = 4.5 as a critical number of 4. We
see that the maximum of 4 occurs when t = 4.5, that is, at ! 0 4.5 11
11:30 a.m. A@) | 50.4 | 164 | 39.8

t2—4t+4)

f(t):lOO( T a

(P+a) -4 - (P-4 +4) (2:)} __ 400 (1P —4) 4000t =2)(t+2)
(12 + 4)° 2+4° (2 +4°

From the sign diagram for /7, we see that 1 = 2 gives a

a. f'(t) = 100[

- = =0+ + + signoff

relative minimum, and we conclude that the oxygen content
>t

-+

is the lowest 2 days after the organic waste has been 0 2
dumped into the pond.

b, £ (1) = 400 [(ﬂ +4)° @) — (2 - 11) 2(+4) (21)] _ 400 [(m) (2 +4) (1 + i — 212 48) }
t+4) (12 +4)
8007 (12 — 12)
f" (1) =0 when t = 0 and 7 = +2+/3. We reject = 0 and 7 = —2+/3. From the sign diagram for f”, we see
that t = 2+/3 gives an inflection point of f and we

PO . + 4+ + — o — H 1
conclude that this is an absolute maximum. Therefore, the ? 0 flgn of f
rate of oxygen regeneration is greatest 3.5 days after the 0 2\'/3 i
organic waste has been dumped into the pond.
v’ (r) = —2kr = 0 if r = 0, so there is no critical number in (0, R). Calculating v () at the endpoints, we see that v

has an absolute maximum of v (0) = kR?, so the velocity is greatest along the central axis.
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61.

62.

63.

64.

65.

66.

XR (x) ~ R(x)
2

We compute R (x) = . Setting R (x) = 0 gives xR' (x) — R (x) = 0, or
X
R — — —
R (x) = R®) = R (x), so a critical number of R occurs when R (x) = R’ (x). Next, we compute
x

- 2[R R'x)—R )] —[xR' (x)—R 2 R"

R’ x) = F R )+ xR () (;4)] [x ) (x)]( *) = () < 0. Thus, by the Second
X

Derivative Test, the critical number does give the maximum revenue.

N (1) = =0.1£2 4 1.5/ + 100 and N’ (r) = —0.3#2 + 3. We want to maximize the function N’ (). Now
N (¢) = —0.61 + 3, so setting N () = 0 gives 7 = 5 as the critical number of N/. N/ (§) = —0.6 <0and? =5
does give rise to a maximum for N’ (#), that is the growth rate was maximal in 2012, as we wished to show.

G (1) = —0.21% +2.412 + 60, so the growth rate is
G' (1) = —0.6¢> + 4.8¢. To find the maximum growth rate, we
compute G” (r) = —1.2¢ +4.8. Setting G” (f) = 0 gives ¢ = 4
as a critical number. From the table, we see that G is maximal
at t = 4; that is, the growth rate is greatest in 2010,

G@mlolos]|o

D (1) = —0.038898¢> + 0.308582 — 0.318497 + 0.22, 50 D’ () = —0.116694¢> + 0.617167 — 0.31849. Setting

—0.61716 % /(0.61716)2 — 4 (=0.116694) (—0.31849)
2 (—0.116694)

From the table, we see that the largest federal budget deficit

=~ (.58 or 4.71.

D' () =0givest =

over the period under consideration was approximately ! 0 10581471 6
$1.5 trillion in 2010. D@ | 022013 | 1.50 | 1.02

N(f) = —87.24444413 — 2482.351% 4 46009.261 + 579185, so
N' (1) = —261.7333281% — 4964.7t + 46009.26. Setting N’ (+) = 0 and using the quadratic formula gives

— (—4964.7) = v/(=4964.7) — 4 (—261.733328) (46009.26)

B 2(—261.73332) 258
or 6.82, s0 6.82 is an approximate critical number of . From
the table, we see that the number of new prison admissions did ! 2 6.82 1
indeed peak in 2006 (¢ = 6) at approximately 749,833, N(r) | 660,576 | 749,833 | 668,800

£ (1) = —0.000440173 + 0.007/2 +0.1127 + 0.28, 50 f* () = —0.0013203/2 + 0.0147 4 0.112. Setting f* (1) = 0

—0.014 £ 1/(0.014)> — 4 (—0.0013203) (0.112) _
2 (—0.0013203) -

and using the quadratic formula gives t = —5.325 or 15.93, so

the only critical number of f in the relevant interval is
approximately 15.93. From the table, we see that the highest ! 0 1593 | 21
rate of death from AIDS worldwide over the period from 1990 S() | 028 2.06 | 1.64
through 2011 was approximately 2.06 million per year in 2006.
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67. S () = & (0.000989¢% — 0.04861% + 0.7116¢ + 1.46) = 0.0029672 — 0.0972¢ + 0.7116. Using the quadratic

0.0972 = /(—0.0972)? — 4(0.002967) (0.7116) _ .
2 (0.002967) T

0

formula to solve the equation f* () = 0 givest =

or 21.7. From the table, we see that .S has an absolute
maximum when 7 = 11. Thus, children with superior
intelligence have a cortex that reaches maximum thickness S@ |39 47| 42

t 5 11.0 | 19

around 11 years of age.

68. 4' (1) = -5; (—0.000057> — 0.0008261% + 0.0153 + 4.55) = —0.00015¢% — 0.001652¢ + 0.0153. Using

the quadratic formula to solve f’ () = 0 with @ = —0.00015, b = —0.001652, and ¢ = 0.0153, we have

, _ = (=0.001652) & V(—=0.001652)2 — 4 (—0.00015) (0.0153)
2 (—0.00015)

From the table, we see that 4 has an absolute maximum when

t & 6, so the cortex of children of average intelligence reaches

a maximum thickness around the time the children are 6 years A(r) | 4.5996 | 4.601 | 4.200

old.

~ —17.01 or 5.997.

69. a. P (r) = 0.00074¢> — 0.0704¢% 4+ 0.89¢ + 6.04, so P’ (f) = 0.00222¢? — 0.1408¢ + 0.89 = 0 implies

L 01408+ V/(0.1408)% — 4 (0.00222) (0.89)
- 2(0.00222)
the interval [0, 10]. P” (f) = 0.00444¢ — 0.1408 and P” (7.12) = —0.109 < 0, and so 7 = 7.12 gives a relative

maximum. This occurs around 2071,

= 7.12 or 56.3. The root 56.3 is rejected because it lies outside

b. The population will peak at P (7.12) = 9.075 billion.

70. a. On [0, 3], f (t) = 0.6 +2.4¢ + 7.6, 50 f' (¢) = 1.2¢ + 2.4 = 0 implies ¢ = —2 which lies outside the interval
[0, 3]. (We evaluate f at each relevant point below.)
On[3,5], () = 312 +18.8¢ — 63.2, 50 f' () = 6t + 18.8 = 0 implies # = —3.13 which lies outside the
interval [3, 5].
On [5, 8], f () = —3.3167¢> + 80.1¢2 — 642.583¢ + 1730.8025, so f (t) = —9.9501¢% + 160.2¢ — 642.583 = 0
—160.2 & /160.22 — 4 (—9.9501) (642.583)
2 (=9.9501)

implies t = 2 7.58 or 8.52. Only the critical number ¢t = 7.58 lies

inside the interval [5, 8].
From the table, we see that the investment peaked ! 0 3 5 758 | 8
when ¢ = 5, that is, in the year 2000. The amount f@® 1762021058 | 178 18.4

invested was $105.8 billion.

b. Investment was lowest (at $7.6 billion) when ¢ = 0.




242 4 APPLICATIONS OF THE DERIVATIVE

71.

72.

73.

74.

75.

76.

3

We want to minimize the function £ (v) = . Because v > u, the function has no points of discontinuity. To

(v —u)3aLv? —alv® _ aLv® (2o — 3u) _
(©=u)’ o e-wt

obtaining v = %u orp = 0. Nowo # Osince v < 0,800 = %u is the only critical number of interest. Because

find the critical numbers of E (), we solve the equation E' (v) = 0,

E'(v) <0ifp < %u and £’ (v) > 0ifo > %u, we see that o = %u gives a relative minimum. The nature of the
problem suggests that v = %u gives the absolute minimum of E (we can verify this by sketching the graph of £).

Therefore, the fish must swim at %u ft/sec in order to minimize the total energy expended.

k D\ _ kD* D* dR 2kD 3D? dR
=Dl - )= o g0l = — kD — D% = _ . _
k=0 (2 3 ) 2 354D 2 3 kD — D® = D (k — D). Setting 7D 0, we have

dR R
D =0ork = D. Weconsider only £ = D because D > 0. If&£ > 0, 7D > 0andifk <0, Z—D < 0. Therefore

k = D gives a relative maximum. The nature of the problem suggests that £k = D gives the absolute maximum of R.
We can also verify this by graphing R.

R @R d?R k 2R
Z—D = kD — D% and T2 =k —2D. Setting D7 = 0, weobtaink = 2D,or D = 5 Because jﬁ > 0 for
2 .
R
k <2D and % < 0 for k > 2D, we see that £ = 2D provides the relative (and absolute) maximum,

R (x)= 6—% [kx (O —x)] = k% (Qx - x2) =k (Q — 2x) is continuous everywhere and has a zero at %Q; this is
the only critical number of R in (0, Q). R(0) =0, R (% Q) = ﬁk 02, and R (Q) = 0, so the absolute maximum

value of R is R (% Q) = 1k (?, showing that the rate of chemical reaction is greatest when exactly half of the

original substrate has been transformed.

= = = 0. Therefore,

2 NI 2 —
SettingP’:OgivesP’:i[ E°R ]—EZ[(R—I—’) R(z)(R“L’)}—E -8

dR [ (R+r)? (R+n)t (R+ry’
R+r¥(-1)— (¢ —RB)(R+r)? 2E2(R-2
R = r is a critical number of P. Because P” = Ez( oy Ch-C 3 JOR+7) = ( 4r)
(R+7) (R+7r)
Y —2E% E? o . o .
P (r)y = —(—2——)—4— =-33 < 0, the Second Derivative Test and physical considerations both imply that R = r
r i
. . . . . E?r E?
gives a relative maximum value of P. The maximum power is P = —— = —— walts.
2y 4
Setting v/ = 0 gives
A Y Aol B L+C1/2 k(L,C A S e kr2-c3)
) = —— —_ — | =K — —_ = - — —_ —_——— | = ————
YTar|eTt aL\c "L 2\c "I c 12 I C
2CL? el + I

Therefore, L = +C. Because v is not defined for L = —C, we reject that root. The length of the wave with
minimum velocity is C.




77.

78.

79.

80.

81.

82.

83,

84.

85.

86.

87.
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dx d

= = 2 [15(10 - 1)~ 0.0013 (10 = )] = =15 = 0.0013 (4) (10 = ) (=1) = ~1.5 +0.0052 (10 — 1)’
T3 1.5
is continuous everywhere and has zeros where 0.0052 (10 — 13) = 1.5; that is, (10 — 1) = 00052°

[ 1.
t=10-_7 6& = 3.4, and so x has the critical number 3.4 in (0, 10). Now x (0) = 2, x (3.4) = 7.4, and

x (10) = 0, showing that after 3.4 minutes, the maximum amount of salt (roughly 7.4 1b) is in the tank.

—x if-1<x <0 Lo . .
False. Let f (x) =1 |, . Then f is discontinuous at x = 0, but f has an absolute maximum
5 H0<x<1
value of 1, attained at x = —1.
x| ifx#0
False. Let f (x) = Il 7 on[-1,1].
I ifx=0

True. f” (x) < 0 on (a, b), so the graph of f is concave downward on (a, b). Therefore, the relative maximum
value at x = ¢ must be the absolute maximum value.

True. The absolute extrema of /" must occur for some x in (g, b) at which /7 (x) = 0, or at an endpoint. Since
S (x) #£ 0 for all x in (a, b), the absolute extrema of £ (and in particular its absolute maximum) must occur at
x = g orx = b, with value f (a) or f (b).

True. Since f’ (x) > 0 for all x in (a, b), we see that the absolute extrema of # must occur at x = a or x = b (see
Exercise 81). But f is increasing on (a, b), which implies that the absolute minimum value of f must occur at the
left endpoint a.

True. This follows from the Second Derivative Test applied to the function P = R — C.
False. Consider f (x) = 1/x on the interval (0, c0).

Because f (x) = ¢ for all x, the function f satisfies f (x) < ¢ for all x and so f has absolute maxima at all values
of x. Similarly, f has absolute minima at all values of x.

Suppose f is a nonconstant polynomial function. Then f (x) = ayx” + ap,—1x"~! 4 - .- + ao, where a, # 0 and
n>1.

First, let us suppose that a, > 0. There are two cases to consider:

(1) If n is odd, then x_ljlzloo f (x) = —oo and ango S (x) = o0, and so f has no absolute extremum.

(2)If miseven,then lim f(x)= lim f (x) = oo, so f cannot have an absolute maximum,
X——00 X—00 .

A similar argument is used in the case where a, < 0.

a. f is not continuous at x = 0 because Iin}) f (x) does not exist. c. y
X—>
. , 1 . .1 5
b. lim f(x) = lim — = —ooand lim f(x) = lim — = .
x>0 x—0x x—0 x—0 X -1
\ 5 —
-5
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88. f (x) can be made as close to —1 as we please by taking x sufficiently close to —1. But the value —1 is never
attained, because x must be greater than —1. Similarly, 1 is never attained. Therefore, f has neither an absolute
minimum value nor an absolute maximum value.

Using Technology | page320

1. Absolute maximum value 145.9, absolute minimum value —4.3834,

2. Absolute maximum value 26.3997, absolute minimum value —4.4372,

3. Absolute maximum value 16, absolute minimum value —0.1257.

4, Absolute maximum value 11.2016, absolute minimum value 9.

5. Absolute maximum value 2.8889, absolute minimum value 0.

6. No absolute maximum or minimum value.

7. a. 600 - ft— | 8. a. The graphs of y; = g (¢) and y, = 100 are
’\/\ shown below.
400 T + ot
1 800 T -
200 T T 600 T 1
| i 1 { ' 400 T T
0 Pt F
o 1 2 3 4 5 200 + 1
b. Using the function for finding the absolute 0 +——+—— ——
minimum of f on [0, 5], we see that the o Tz 34
absolute minimum value of f is approximately The graphs intersect at approximately
415.56, occurring when x =~ 2.87. This proves (1.36, 100). This says that the construction
the assertion. loans of peer banks first exceeded the

recommended maximum of 100% near the
beginning of May 2004,

b. The maximum was approximately
g (5) =~ 836%.




