- **66.** Differentiating the equation $2h^{1/2} + \frac{1}{25}t 2\sqrt{20} = 0$ with respect to t gives $2\left(\frac{1}{2}h^{-1/2}\right)\frac{dh}{dt} + \frac{1}{25} = 0$, or $\frac{dh}{dt} = -\frac{\sqrt{h}}{25}$. Therefore, with h = 8, we have $\frac{dh}{dt} = \frac{\sqrt{8}}{25} \approx -0.113$. Thus, the height of the water is decreasing at the rate of approximately 0.11 ft/sec.
- 67. $P^5V^7 = C$, so $V^7 = CP^{-5}$ and $7V^6\frac{dV}{dt} = -5CP^{-6}\frac{dP}{dt}$. Therefore, $\frac{dV}{dt} = -\frac{5C}{7P^6V^6}\frac{dP}{dt} = -\frac{5P^5V^7}{7P^6V^6}\frac{dP}{dt} = -\frac{5}{7}\frac{V}{P}\frac{dP}{dt}$. When V = 4 L, P = 100 kPa, and $\frac{dP}{dt} = -5\frac{\text{kPa}}{\text{sec}}$, we have $\frac{dV}{dt} = -\frac{5}{7} \cdot \frac{4}{100} (-5) = \frac{1}{7} \left(\frac{\text{L}}{\text{kPa}} \cdot \frac{\text{kPa}}{\text{s}} \right) = \frac{1}{7} \frac{\text{L}}{\text{s}}.$
- **68.** When $v = 2.92 \times 10^8$ and $\frac{dv}{dt} = a = 2.42 \times 10^5$, $\frac{dm}{dt} = \frac{\left(9.11 \times 10^{-31}\right) \left(2.92 \times 10^8\right) \left(2.42 \times 10^5\right)}{\left(2.98 \times 10^8\right)^2 \left[1 \left(\frac{2.92 \times 10^8}{2.98 \times 10^8}\right)^2\right]^{3/2}} \approx 9.1 \times 10^{-32}$,

so the mass is increasing at the rate of approximately 9.1×10^{-32} kg/sec.

- **69.** False. There are no real numbers x and y such that $x^2 + y^2 = -1$.
- 70. True. If $-1 \le x < 0$, then $y^2 = \left(\sqrt{1 x^2}\right)^2 = 1 x^2$, so $x^2 + y^2 = 1$. If $0 \le x \le 1$, then $y^2 = \left(-\sqrt{1 x^2}\right)^2 = 1 x^2$, so $x^2 + y^2 = 1$.
- 71. True. Differentiating both sides of the equation with respect to x, we have $\frac{d}{dx} [f(x)g(y)] = \frac{d}{dx}(0)$, so $f(x)g'(y)\frac{dy}{dx} + f'(x)g(y) = 0$, and therefore $\frac{dy}{dx} = -\frac{f'(x)g(y)}{f(x)g'(y)}$, provided $f(x) \neq 0$ and $g'(y) \neq 0$.
- 72. True. Differentiating both sides of the equation with respect to x, $\frac{d}{dx} \left[f(x) + g(y) \right] = \frac{d}{dx} (0)$, so $f'(x) + g'(y) \frac{dy}{dx} = 0$, and therefore $\frac{dy}{dx} = -\frac{f'(x)}{g'(y)}$.
- 73. True. If y = f(x), then $\Delta y = f(x + \Delta x) f(x) \approx f'(x) \Delta x$, from which it follows that $f(x + \Delta x) \approx f(x) + f'(x) \Delta x$.
- 74. True. Let $y = f(x) = x^{1/3}$. Then $y' = f'(x) = \frac{1}{3}x^{-2/3} = \frac{1}{3x^{2/3}}$. At x = a, $\Delta y = f(a + \Delta x) f(a) \approx f'(a) \Delta x$, so $f(a + \Delta x) \approx f(a) + f'(a) \Delta x = a^{1/3} + \frac{\Delta x}{3a^{2/3}}$. Letting $\Delta x = h$, we have $(a + h)^{1/3} = f(a + h) \approx a^{1/3} + \frac{h}{3a^{2/3}}$.

3.7 Differentials

Concept Questions page 24

- 1. The differential of x is dx. The differential of y is dy = f'(x) dx.
- **2.** a. $A = \Delta x$, $B = \Delta y$, and C = dy.

$$\mathbf{b.} \ f'(x) = \frac{dy}{\Delta x}.$$

- **c.** From part (b), we see that $dy = f'(x) \Delta x$. Because $B \approx C$, $\Delta y \approx f'(x) \Delta x = f'(x) dx$.
- 3. Because $\Delta P = P(t_0 + \Delta t) P(t_0) \approx P'(t_0) \Delta t$, we see that $P'(t_0) \Delta t$ is an approximation of the change in the population from time t_0 to time $t_0 + \Delta t$.
- **4.** $P(t) = P(t_0 + \Delta t) \approx P(t_0) + P'(t_0) \Delta t$.

Exercises page 240

- 1. $f(x) = 2x^2$ and dy = 4x dx.
- **2.** $f(x) = 3x^2 + 1$ and dy = 6x dx.
- 3. $f(x) = x^3 x$ and $dy = (3x^2 1) dx$.
- **4.** $f(x) = 2x^3 + x$ and $dy = (6x^2 + 1) dx$.
- 5. $f(x) = \sqrt{x+1} = (x+1)^{1/2}$ and $dy = \frac{1}{2}(x+1)^{-1/2} dx = \frac{dx}{2\sqrt{x+1}}$.
- **6.** $f(x) = 3x^{-1/2}$ and $dy = -\frac{3}{2x^{3/2}} dx$.
- 7. $f(x) = 2x^{3/2} + x^{1/2}$ and $dy = \left(3x^{1/2} + \frac{1}{2}x^{-1/2}\right)dx = \frac{1}{2}x^{-1/2} (6x + 1) dx = \frac{6x + 1}{2\sqrt{x}} dx$.
- **8.** $f(x) = 3x^{5/6} + 7x^{2/3}$ and $dy = \left(\frac{5}{2}x^{-1/6} + \frac{14}{3}x^{-1/3}\right)dx$.
- 9. $f(x) = x + \frac{2}{x}$ and $dy = \left(1 \frac{2}{x^2}\right) dx = \frac{x^2 2}{x^2} dx$.
- **10.** $f(x) = \frac{3}{x-1}$ and $dy = -\frac{3}{(x-1)^2}dx$.
- 11. $f(x) = \frac{x-1}{x^2+1}$ and $dy = \frac{x^2+1-(x-1)\,2x}{\left(x^2+1\right)^2}\,dx = \frac{-x^2+2x+1}{\left(x^2+1\right)^2}\,dx$.
- 12. $f(x) = \frac{2x^2 + 1}{x + 1}$ and $dy = \frac{(x + 1)(4x) (2x^2 + 1)}{(x + 1)^2} dx = \frac{2x^2 + 4x 1}{(x + 1)^2} dx$.
- **13.** $f(x) = \sqrt{3x^2 x} = (3x^2 x)^{1/2}$ and $dy = \frac{1}{2}(3x^2 x)^{-1/2}(6x 1) dx = \frac{6x 1}{2\sqrt{3x^2 x}} dx$.
- **14.** $f(x) = (2x^2 + 3)^{1/3}$ and $dy = \frac{1}{3}(2x^2 + 3)^{-2/3}(4x) dx = \frac{4x}{3(2x^2 + 3)^{2/3}} dx$.

15.
$$f(x) = x^2 - 1$$
.

$$\mathbf{a.} \ dy = 2x \ dx.$$

b.
$$dv \approx 2(1)(0.02) = 0.04$$
.

c.
$$\Delta y = [(1.02)^2 - 1] - (1 - 1) = 0.0404.$$

16.
$$f(x) = 3x^2 - 2x + 6$$

a.
$$dy = (6x - 2) dx$$
.

b.
$$dy \approx 10 \, (-0.03) = -0.3.$$

c.
$$\Delta y = [3(1.97)^2 - 2(1.97) + 6] - [3(2)^2 - 2(2) + 6] = -0.2973.$$

17.
$$f(x) = \frac{1}{x}$$
.

$$a. dy = -\frac{dx}{x^2}.$$

b.
$$dy \approx -0.05$$
.

c.
$$\Delta y = \frac{1}{-0.95} - \frac{1}{-1} \approx -0.05263$$
.

18.
$$f(x) = \sqrt{2x+1} = (2x+1)^{1/2}$$
.

a.
$$dy = \frac{1}{2} (2x+1)^{-1/2} (2) dx = \frac{dx}{\sqrt{2x+1}}$$
.

b.
$$dy \approx \frac{0.1}{\sqrt{9}} \approx 0.03333$$
.

c.
$$\Delta y = [2(4.1) + 1]^{1/2} - [2(4) + 1]^{1/2} \approx 0.03315.$$

19.
$$y = \sqrt{x}$$
 and $dy = \frac{dx}{2\sqrt{x}}$. Therefore, $\sqrt{10} \approx 3 + \frac{1}{2 \cdot \sqrt{9}} \approx 3.167$.

20.
$$y = \sqrt{x}$$
 and $dy = \frac{dx}{2\sqrt{x}}$. Therefore, $\sqrt{17} \approx 4 + \frac{1}{2 \cdot 4} = 4.125$.

21.
$$y = \sqrt{x}$$
 and $dy = \frac{dx}{2\sqrt{x}}$. Therefore, $\sqrt{49.5} \approx 7 + \frac{0.5}{2 \cdot 7} \approx 7.0357$.

22.
$$y = \sqrt{x}$$
 and $dy = \frac{dx}{2\sqrt{x}}$. Therefore, $\sqrt{99.7} \approx 10 - \frac{0.3}{2 \cdot 10} = 9.985$.

23.
$$y = x^{1/3}$$
 and $dy = \frac{1}{3}x^{-2/3} dx$. Therefore, $\sqrt[3]{7.8} \approx 2 - \frac{0.2}{3 \cdot 4} \approx 1.983$.

24.
$$y = x^{1/4}$$
 and $dy = \frac{1}{4}x^{-3/4} dx$. Therefore, $\sqrt[4]{81.6} \approx 3 + \frac{0.6}{4 \cdot 27} \approx 3.0056$.

25.
$$y = \sqrt{x}$$
 and $dy = \frac{dx}{2\sqrt{x}}$. Therefore, $\sqrt{0.089} = \frac{1}{10}\sqrt{8.9} \approx \frac{1}{10}\left(3 - \frac{0.1}{2.3}\right) \approx 0.298$.

26.
$$y = \sqrt[3]{x}$$
 and $dy = \frac{dx}{3x^{2/3}}$. Therefore, $\sqrt[3]{0.00096} = \frac{1}{100} \sqrt[3]{960} \approx \frac{1}{100} \left[10 - \frac{40}{3(100)} \right] \approx 0.0987$.

27.
$$y = f(x) = \sqrt{x} + \frac{1}{\sqrt{x}} = x^{1/2} + x^{-1/2}$$
. Therefore, $\frac{dy}{dx} = \frac{1}{2}x^{-1/2} - \frac{1}{2}x^{-3/2}$, so $dy = \left(\frac{1}{2x^{1/2}} - \frac{1}{2x^{3/2}}\right)dx$.

Letting x = 4 and dx = 0.02, we find $\sqrt{4.02} + \frac{1}{\sqrt{4.02}} - f(4) = f(4.02) - f(4) = \Delta y \approx dy$, so

$$\sqrt{4.02} + \frac{1}{\sqrt{4.02}} \approx f(4) + dy \approx 2 + \frac{1}{2} + \left(\frac{1}{2 \cdot 2} - \frac{1}{16}\right)(0.02) = 2.50375.$$

167

28. Let
$$y = f(x) = \frac{2x}{x^2 + 1}$$
. Then $\frac{dy}{dx} = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2(1 - x^2)}{(x^2 + 1)^2}$ and $dy = \frac{2(1 - x^2)}{(x^2 + 1)^2} dx$. Letting $x = 5$ and $dx = -0.02$, we find $f(5) - f(4.98) = \frac{2(5)}{5^2 + 1} - \frac{2(4.98)}{(4.98)^2 + 1} = \Delta y \approx dy$, so $\frac{2(4.98)}{(4.98)^2 + 1} \approx \frac{10}{26} - \frac{2(1 - 5^2)}{(5^2 + 1)^2} (-0.02) \approx 0.3832$.

- **29.** The volume of the cube is given by $V = x^3$. Then $dV = 3x^2 dx$, and when x = 12 and dx = 0.02, dV = 3 (144) (± 0.02) = \pm 8.64. The possible error that might occur in calculating the volume is \pm 8.64 cm³.
- **30.** The area of the cube of side x cm is $S = 6x^2$. Thus, the amount of paint required is approximately $\Delta S = 6(x + \Delta x)^2 6x^2 \approx dS = 12x \, dx$. With x = 30 and $dx = \Delta x = 0.05$, $\Delta S \approx 12 (30) (0.05) = 18$, or approximately 18 cm³.
- 31. The volume of the hemisphere is given by $V=\frac{2}{3}\pi r^3$. The amount of rust-proofer needed is $\Delta V=\frac{2}{3}\pi \left(r+\Delta r\right)^3-\frac{2}{3}\pi r^3\approx dV=\frac{2}{3}\left(3\pi r^2\right)dr$. Thus, with r=60 and $dr=\frac{1}{12}$ (0.01), we have $\Delta V\approx 2\pi \left(60^2\right)\left(\frac{1}{12}\right)$ (0.01) ≈ 18.85 . So we need approximately 18.85 ft³ of rust-proofer.
- 32. The volume of the tumor is given by $V = \frac{4}{3}\pi r^3$. Then $dV = 4\pi r^2 dr$. When r = 1.1 and dr = 0.005, $dV = 4\pi (1.1)^2 (\pm 0.005) = \pm 0.076$ cm³.
- 33. $dR = \frac{d}{dr} \left(k\ell r^{-4}\right) dr = -4k\ell r^{-5} dr$. With $\frac{dr}{r} = 0.1$, we find $\frac{dR}{R} = -\frac{4k\ell r^{-5}}{k\ell r^{-4}} dr = -4\frac{dr}{r} = -4 (0.1) = -0.4$. In other words, the resistance will drop by 40%.
- **34.** $f(x) = 640x^{1/5}$ and $df = 128x^{-4/5} dx$. When x = 243 and dx = 5, we have $df = 128(243)^{-4/5}(5) = 128(\frac{5}{81}) \approx 7.9$, or approximately \$7.9 billion.
- 35. $f(n) = 4n\sqrt{n-4} = 4n(n-4)^{1/2}$, so $df = 4\left[(n-4)^{1/2} + \frac{1}{2}n(n-4)^{-1/2}\right]dn$. When n = 85 and dn = 5, $df = 4\left(9 + \frac{85}{2 \cdot 9}\right)5 \approx 274$ seconds.
- 36. $P(x) = -\frac{1}{8}x^2 + 7x + 30$ and $dP = \left(-\frac{1}{4}x + 7\right)dx$. To estimate the increase in profits when the amount spent on advertising each quarter is increased from \$24,000 to \$26,000, we set x = 24 and dx = 2 and compute $dP = \left(-\frac{24}{4} + 7\right)(2) = 2$, or \$2000.
- 37. $N(r) = \frac{7}{1+0.02r^2}$ and $dN = -\frac{0.28r}{\left(1+0.02r^2\right)^2}dr$. To estimate the decrease in the number of housing starts when the mortgage rate is increased from 6% to 6.5%, we set r=6 and dr=0.5 and compute $dN = -\frac{(0.28)(6)(0.5)}{(1.72)^2} \approx -0.283937$, or 283,937 fewer housing starts.

- 38. $s(x) = 0.3\sqrt{x} + 10$ and $s' = \frac{0.15}{\sqrt{x}} dx$. To estimate the change in price when the quantity supplied is increased from 10,000 units to 10,500 units, we compute $ds = \frac{(0.15)500}{100} = 0.75$, or 75 cents.
- 39. $p = \frac{30}{0.02x^2 + 1}$ and $dp = -\frac{1.2x}{\left(0.02x^2 + 1\right)^2} dx$. To estimate the change in the price p when the quantity demanded changed from 5000 to 5500 units per week (that is, x changes from 5 to 5.5), we compute $dp = \frac{(-1.2)(5)(0.5)}{\left[0.02(25) + 1\right]^2} \approx -1.33$, a decrease of \$1.33.
- **40.** $S = kW^{2/3}$ and $dS = \frac{0.2}{3W^{1/3}} dW$. To determine the percentage error in the calculation of the surface area of a horse that weighs 300 kg when the maximum error in measurement is 0.6 kg and k = 0.1, we compute $\frac{dS}{S} = \frac{0.2}{3W^{1/3}} dW \cdot \frac{1}{0.1W^{2/3}} = \frac{2}{3W} dW = \frac{2(0.6)}{3(300)} \approx 0.00133$, or 0.133%.
- **41.** $P(x) = -0.000032x^3 + 6x 100$ and $dP = (-0.000096x^2 + 6) dx$. To determine the error in the estimate of Trappee's profits corresponding to a maximum error in the forecast of 15 percent [that is, $dx = \pm 0.15$ (200)], we compute $dP = [(-0.000096)(200)^2 + 6](\pm 30) = (2.16)(30) = \pm 64.80$, or \$64,800.
- **42.** $p = \frac{55}{2x^2 + 1}$ and $dp = -\frac{220x}{\left(2x^2 + 1\right)^2} dx$. To find the error corresponding to a possible error of 15% in a forecast of 1.8 billion bushels, we compute $dp = -\frac{(220)(1.8)(\pm 0.27)}{\left[2(1.8)^2 + 1\right]^2} \approx \pm 1.91$, or approximately \$1.91/bushel.
- 43. The approximate change in the quantity demanded is given by $\Delta x \approx dx = f'(p) \, \Delta p = \frac{d}{dp} \, (144 p)^{1/2} \, \Delta p = -\frac{1}{2} \cdot \frac{1}{\sqrt{144 p}} \cdot \Delta p. \text{ When } \Delta p = 110 108 = 2, \text{ we find}$ $\Delta x = -\frac{1}{2} \cdot \frac{1}{\sqrt{144 108}} \, (2) = -\frac{1}{6} \approx -0.1667. \text{ Thus, the quantity demanded decreases by approximately}$ 167 tires/week.
- 44. The change is given by

$$\Delta A \approx dA = A'(t) dt = 136 \frac{d}{dt} \left\{ \left[1 + 0.25 (t - 4.5)^2 \right]^{-1} + 28 \right\} \Delta t$$
$$= 136 \left[1 + 0.25 (t - 4.5)^2 \right]^{-2} (0.25) (2) (t - 4.5) \Delta t = \frac{68 (t - 4.5)}{\left[1 + 0.25 (t - 4.5)^2 \right]^2} \Delta t.$$

When t = 8 and $\Delta t = 8.05 - 8 = 0.05$, we find $A \approx 0.7210$, so the change in the amount of nitrogen dioxide is approximately 0.72 PSI.

45.
$$N(x) = \frac{500 (400 + 20x)^{1/2}}{(5 + 0.2x)^2}$$
 and

$$N'(x) = \frac{(5+0.2x)^2 250 (400+20x)^{-1/2} (20) - 500 (400+20x)^{1/2} (2) (5+0.2x) (0.2)}{(5+0.2x)^4} dx.$$
 To estimate the

change in the number of crimes if the level of reinvestment changes from 20 cents to 22 cents per dollar deposited, we compute

$$dN = \frac{(5+4)^2 (250) (800)^{-1/2} (20) - 500 (400 + 400)^{1/2} (2) (9) (0.2)}{(5+4)^4} (2) \approx \frac{(14318.91 - 50911.69)}{9^4} (2)$$

 ≈ -11 , a decrease of approximately 11 crimes per year.

46. a.
$$P = \frac{20,000r}{1 - \left(1 + \frac{r}{12}\right)^{-360}} \text{ and}$$

$$dP = \frac{\left[1 - \left(1 + \frac{r}{12}\right)^{-360}\right] 20,000 - 20,000r (360) \left(1 + \frac{r}{12}\right)^{-361} \left(\frac{1}{12}\right)}{\left[1 - \left(1 + \frac{r}{12}\right)^{-360}\right]^2} dr$$

$$= \frac{20,000 \left\{ \left[1 - \left(1 + \frac{r}{12}\right)^{-360}\right] - 30r \left(1 + \frac{r}{12}\right)^{-361}\right\}}{\left[1 - \left(1 + \frac{r}{12}\right)^{-360}\right]^2} dr$$

b. When r=0.05, $dP\approx\frac{20,000~(0.776173404-0.334346782)}{(0.776173404)^2}\approx14,667.77912~dr$. When the interest rate increases from 5% to 5.2% per year, $dP=14,667.77912~(0.002)\approx29.34$, or approximately \$29.34. When the interest rate increases from 5% to 5.3% per year, $dP=14,667.77912~(0.003)\approx44.00$, or approximately

\$44.00. When the interest rate increases from 5% to 5.4% per year, dP = 14,667.77912 (0.004) ≈ 58.67 , or approximately \$58.67. When the interest rate increases from 5% to 5.5% per year, dP = 14,667.77912 (0.005) ≈ 73.34 , or approximately \$73.34.

47.
$$A = 10,000 \left(1 + \frac{r}{12}\right)^{120}$$
.

a.
$$dA = 10,000 (120) \left(1 + \frac{r}{12}\right)^{119} \left(\frac{1}{12}\right) dr = 100,000 \left(1 + \frac{r}{12}\right)^{119} dr$$
.

b. At 3.1%, it will be worth $100,000 \left(1 + \frac{0.03}{12}\right)^{119}$ (0.001), or approximately \$134.60 more. At 3.2%, it will be worth $100,000 \left(1 + \frac{0.03}{12}\right)^{119}$ (0.002), or approximately \$269.20 more. At 3.3%, it will be worth $100,000 \left(1 + \frac{0.03}{12}\right)^{119}$ (0.003), or approximately \$403.80 more.

48.
$$S = \frac{24,000\left[\left(1 + \frac{r}{12}\right)^{300} - 1\right]}{r}$$

a.
$$dS = 24,000 \left[\frac{(r)\,300\,\left(1 + \frac{r}{12}\right)^{299}\left(\frac{1}{12}\right) - \left(1 + \frac{r}{12}\right)^{300} + 1}{r^2} \right] dr.$$

b. With r = 0.04, we find $dS = 14,864,762.53 \, dr$. Therefore, if John's account earned 4.1%, it would be worth $dS = 14,864,762.53 \, (0.001) \approx $14,864.76 \, \text{more}$; if it earned 4.2%, it would be worth $dS = 14,864,762.53 \, (0.002) \approx $29,729.53 \, \text{more}$, and if it earned 4.3%, it would be worth $dS = 14,864,762.53 \, (0.003) \approx $44,594.29 \, \text{more}$.