- 70.  $N(t) = 1.42 \cdot x$   $(t) = \frac{1.42 \cdot 7(t+10)^2}{(t+10)^2 + 2(t+15)^2} = \frac{9.94(t+10)^2}{(t+10)^2 + 2(t+15)^2}$ . The number of jobs created 6 months from now will be  $N(6) = \frac{9.94(16)^2}{(16)^2 + 2(21)^2} \approx 2.24$ , or approximately 2.24 million jobs. The number of jobs created 12 months from now will be  $N(12) = \frac{9.94(22)^2}{(22)^2 + 2(27)^2} \approx 2.48$ , or approximately 2.48 million jobs.
- 71. a. s = f + g + h = (f + g) + h = f + (g + h). This suggests we define the sum s by s(x) = (f + g + h)(x) = f(x) + g(x) + h(x).
  - **b.** Let f, g, and h define the revenue (in dollars) in week t of three branches of a store. Then its total revenue (in dollars) in week t is s(t) = (f + g + h)(t) = f(t) + g(t) + h(t).
- 72. a.  $(h \circ g \circ f)(x) = h(g(f(x)))$ 
  - **b.** Let t denote time. Suppose f gives the number of people at time t in a town, g gives the number of cars as a function of the number of people in the town, and H gives the amount of carbon monoxide in the atmosphere. Then  $(h \circ g \circ f)(t) = h(g(f(t)))$  gives the amount of carbon monoxide in the atmosphere at time t.
- 73. True. (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).
- 74. False. Let f(x) = x + 2 and  $g(x) = \sqrt{x}$ . Then  $(g \circ f)(x) = \sqrt{x + 2}$  is defined at x = -1, But  $(f \circ g)(x) = \sqrt{x} + 2$  is not defined at x = -1.
- 75. False. Take  $f(x) = \sqrt{x}$  and g(x) = x + 1. Then  $(g \circ f)(x) = \sqrt{x} + 1$ , but  $(f \circ g)(x) = \sqrt{x + 1}$ .
- **76.** False. Take f(x) = x + 1. Then  $(f \circ f)(x) = f(f(x)) = x + 2$ , but  $f^2(x) = [f(x)]^2 = (x + 1)^2 = x^2 + 2x + 1$ .
- 77. True.  $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$  and  $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$ .
- **78.** False. Take  $h(x) = \sqrt{x}$ , g(x) = x, and  $f(x) = x^2$ . Then  $(h \circ (g+f))(x) = h(x+x^2) = \sqrt{x+x^2} \neq ((h \circ g) + (h \circ f))(x) = h(g(x)) + h(f(x)) = \sqrt{x} + \sqrt{x^2}$ .

## 2.3 Functions and Mathematical Models

## **Concept Questions**

page 88

- 1. See page 78 of the text. Answers will vary.
- 2. a.  $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ , where  $a_n \neq 0$  and n is a positive integer. An example is  $P(x) = 4x^3 3x^2 + 2$ .
  - **b.**  $R(x) = \frac{P(x)}{Q(x)}$ , where P and Q are polynomials with  $Q(x) \neq 0$ . An example is  $R(x) = \frac{3x^4 2x^2 + 1}{x^2 + 3x + 5}$
- **3. a.** A demand function p = D(x) gives the relationship between the unit price of a commodity p and the quantity x demanded. A supply function p = S(x) gives the relationship between the unit price of a commodity p and the quantity x the supplier will make available in the marketplace.
  - **b.** Market equilibrium occurs when the quantity produced is equal to the quantity demanded. To find the market equilibrium, we solve the equations p = D(x) and p = S(x) simultaneously.

## Exercises pag

page 88

1. Yes. 
$$2x + 3y = 6$$
 and so  $y = -\frac{2}{3}x + 2$ .

3. Yes. 
$$2y = x + 4$$
 and so  $y = \frac{1}{2}x + 2$ .

**5.** Yes. 
$$4y = 2x + 9$$
 and so  $y = \frac{1}{2}x + \frac{9}{4}$ .

7. No, because of the term 
$$x^2$$
.

9. 
$$f$$
 is a polynomial function in  $x$  of degree 6.

2. Yes. 
$$4y = 2x + 7$$
 and so  $y = \frac{1}{2}x + \frac{7}{4}$ .

**4.** Yes. 
$$3y = 2x - 8$$
 and so  $y = \frac{2}{3}x - \frac{8}{3}$ .

**6.** Yes. 
$$6y = 3x + 7$$
 and so  $y = \frac{1}{2}x + \frac{7}{6}$ .

**8.** No, because of the term 
$$\sqrt{x}$$
.

10. 
$$f$$
 is a rational function.

11. Expanding 
$$G(x) = 2(x^2 - 3)^3$$
, we have  $G(x) = 2x^6 - 18x^4 + 54x^2 - 54$ , and we conclude that  $G$  is a polynomial function of degree 6 in  $x$ .

12. We can write 
$$H(x) = \frac{2}{x^3} + \frac{5}{x^2} + 6 = \frac{2 + 5x + 6x^3}{x^3}$$
 and conclude that  $H$  is a rational function.

13. f is neither a polynomial nor a rational function.

14. f is a rational function.

15. 
$$f(0) = 2$$
 gives  $f(0) = m(0) + b = b = 2$ . Next,  $f(3) = -1$  gives  $f(3) = m(3) + b = -1$ . Substituting  $b = 2$  in this last equation, we have  $3m + 2 = -1$ , or  $3m = -3$ , and therefore,  $m = -1$  and  $b = 2$ .

**16.** 
$$f(2) = 4$$
 gives  $f(2) = 2m + b = 4$ . We also know that  $m = -1$ . Therefore, we have  $2(-1) + b = 4$  and so  $b = 6$ .

17. a. 
$$C(x) = 8x + 40,000$$
.

**b.** 
$$R(x) = 12x$$
.

**c.** 
$$P(x) = R(x) - C(x) = 12x - (8x + 40,000) = 4x - 40,000.$$

**d.** 
$$P(8000) = 4(8000) - 40,000 = -8000$$
, or a loss of \$8000.  $P(12,000) = 4(12,000) - 40,000 = 8000$ , or a profit of \$8000.

**18. a.** 
$$C(x) = 14x + 100,000$$
.

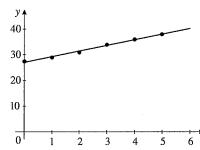
**b.** 
$$R(x) = 20x$$
.

**c.** 
$$P(x) = R(x) - C(x) = 20x - (14x + 100,000) = 6x - 100,000.$$

**d.** 
$$P(12,000) = 6(12,000) - 100,000 = -28,000$$
, or a loss of \$28,000.  $P(20,000) = 6(20,000) - 100,000 = 20,000$ , or a profit of \$20,000.

19. The individual's disposable income is 
$$D = (1 - 0.28) \cdot 60,000 = 43,200$$
, or \$43,200.

**20.** The child should receive 
$$D(0.4) = \frac{(0.4)(500)}{1.7} \approx 117.65$$
, or approximately 118 mg.


21. The child should receive 
$$D(4) = \left(\frac{4+1}{24}\right)(500) \approx 104.17$$
, or approximately 104 mg.

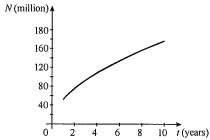
**22.** a. The graph of 
$$f$$
 passes through the points  $P_1$  (0, 17.5) and  $P_2$  (10, 10.3). Its slope is  $\frac{10.3 - 17.5}{10 - 0} = -0.72$ . An equation of the line is  $y - 17.5 = -0.72$  ( $t - 0$ ) or  $y = -0.72t + 17.5$ , so the linear function is  $f(t) = -0.72t + 17.5$ .

**57** 

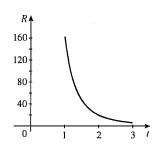
- c. The percentage of high school students who drink and drive at the beginning of 2014 is projected to be f(13) = -0.72(13) + 17.5 = 8.14, or 8.14%.
- 23. a. The slope of the graph of f is a line with slope -13.2 passing through the point (0, 400), so an equation of the line is y 400 = -13.2 (t 0) or y = -13.2t + 400, and the required function is f(t) = -13.2t + 400.
  - **b.** The emissions cap is projected to be f(2) = -13.2(2) + 400 = 373.6, or 373.6 million metric tons of carbon dioxide equivalent.
- **24. a.** The graph of f is a line through the points  $P_1$  (0, 0.7) and  $P_2$  (20, 1.2), so it has slope  $\frac{1.2 0.7}{20 0} = 0.025$ . Its equation is y 0.7 = 0.025 (t 0) or y = 0.025t + 0.7. The required function is thus f(t) = 0.025t + 0.7.
  - **b.** The projected annual rate of growth is the slope of the graph of f, that is, 0.025 billion per year, or 25 million per year.
  - c. The projected number of boardings per year in 2022 is f(10) = 0.025(10) + 0.7 = 0.95, or 950 million boardings per year.






- **b.** The projected revenue in 2010 is projected to be f(6) = 2.19(6) + 27.12 = 40.26, or \$40.26 billion.
- c. The rate of increase is the slope of the graph of f, that is, 2.19 (billion dollars per year).
- **26.** Two hours after starting work, the average worker will be assembling at the rate of  $f(2) = -\frac{3}{2}(2)^2 + 6(2) + 10 = 16$ , or 16 phones per hour.

**27.** 
$$P(28) = -\frac{1}{9}(28)^2 + 7(28) + 30 = 128$$
, or \$128,000.


- **28.** a. The amount paid out in 2010 was S(0) = 0.72, or \$0.72 trillion (or \$720 billion).
  - **b.** The amount paid out in 2030 is projected to be  $S(3) = 0.1375(3)^2 + 0.5185(3) + 0.72 = 3.513$ , or \$3.513 trillion.
- **29.** a. The average time spent per day in 2009 was f(0) = 21.76 (minutes).
  - **b.** The average time spent per day in 2013 is projected to be  $f(4) = 2.25 (4)^2 + 13.41 (4) + 21.76 = 111.4 (minutes).$
- **30.** a. The GDP in 2011 was G(0) = 15, or \$15 trillion.
  - **b.** The projected GDP in 2015 is  $G(4) = 0.064(4)^2 + 0.473(4) + 15.0 = 17.916$ , or \$17.196 trillion.
- **31.** a. The GDP per capita in 2000 was  $f(10) = 1.86251(10)^2 28.08043(10) + 884 = 789.4467$ , or \$789.45.
  - **b.** The GDP per capita in 2030 is projected to be  $f(40) = 1.86251(40)^2 28.08043(40) + 884 = 2740.7988$ , or \$2740.80.

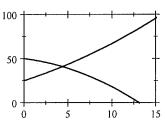
- 32. a. The number of enterprise IM accounts in 2006 is given by N(0) = 59.7, or 59.7 million.
  - **b.** The number of enterprise IM accounts in 2010, assuming a continuing trend, is given by  $N(4) = 2.96(4)^2 + 11.37(4) + 59.7 = 152.54$  million.
- **33.**  $S(6) = 0.73(6)^2 + 15.8(6) + 2.7 = 123.78$  million kilowatt-hr.  $S(8) = 0.73(8)^2 + 15.8(8) + 2.7 = 175.82$  million kilowatt-hr.
- **34.** The U.S. public debt in 2005 was f(0) = 8.246, or \$8.246 trillion. The public debt in 2008 was  $f(3) = -0.03817(3)^3 + 0.4571(3)^2 0.1976(3) + 8.246 = 10.73651$ , or approximately \$10.74 trillion.
- **35.** The percentage who expected to work past age 65 in 1991 was f(0) = 11, or 11%. The percentage in 2013 was  $f(22) = 0.004545(22)^3 0.1113(22)^2 + 1.385(22) + 11 = 35.99596$ , or approximately 36%.
- **36.** N(0) = 0.7 per 100 million vehicle miles driven.  $N(7) = 0.0336(7)^3 0.118(7)^2 + 0.215(7) + 0.7 = 7.9478$  per 100 million vehicle miles driven.
- 37. a. Total global mobile data traffic in 2009 was f(0) = 0.06, or 60,000 terabytes.
  - **b.** The total in 2014 will be  $f(5) = 0.021(5)^3 + 0.015(5)^2 + 0.12(5) + 0.06 = 3.66$ , or 3.66 million terabytes.
- **38.** Here Y = 0.06, D = 0.2, and R = 0.05, so the leveraged return is  $L = \frac{0.06 (1 0.2)(0.05)}{0.2} = 0.1$ , or 10%.
- 39. a. We first construct a table.

|   |      | _ |    |      |
|---|------|---|----|------|
| t | N(t) |   | t  | N(t) |
| 1 | 52   |   | 6  | 135  |
| 2 | 75   |   | 7  | 146  |
| 3 | 93   |   | 8  | 157  |
| 4 | 109  |   | 9  | 167  |
| 5 | 122  |   | 10 | 177  |



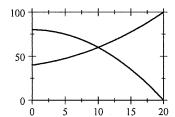
- **b.** The number of viewers in 2012 is given by  $N(10) = 52(10)^{0.531} \approx 176.61$ , or approximately 177 million viewers.
- 40. a.




- $R(1) = 162.8(1)^{-3.025} = 162.8, R(2) = 162.8(2)^{-3.025} \approx 20.0,$ and  $R(3) = 162.8(3)^{-3.025} \approx 5.9.$
- **b.** The infant mortality rates in 1900, 1950, and 2000 are 162.8, 20.0, and 5.9 per 1000 live births, respectively.
- **41.**  $N(5) = 0.0018425 (10)^{2.5} \approx 0.58265$ , or approximately 0.583 million.  $N(13) = 0.0018425 (18)^{2.5} \approx 2.5327$ , or approximately 2.5327 million.
- **42.** a.  $S(0) = 4.3(0+2)^{0.94} \approx 8.24967$ , or approximately \$8.25 billion.
  - **b.**  $S(8) = 4.3(8+2)^{0.94} \approx 37.45$ , or approximately \$37.45 billion.

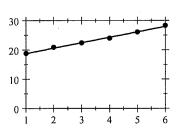
- **86.** True. If P(x) is a polynomial function, then  $P(x) = \frac{P(x)}{1}$  and so it is a rational function. The converse is false. For example,  $R(x) = \frac{x+1}{x-1}$  is a rational function that is not a polynomial.
- **87.** False.  $f(x) = x^{1/2}$  is not defined for negative values of x.
- 88. False. A power function has the form  $x^r$ , where r is a real number.

## Using Technology


page 98

- **1.** (-3.0414, 0.1503), (3.0414, 7.4497).
- **2.** (-5.3852, 9.8007), (5.3852, -4.2007).
- **3.** (-2.3371, 2.4117), (6.0514, -2.5015).
- **4.** (-2.5863, -0.3585), (6.1863, -4.5694).
- 5. (-1.0219, -6.3461), (1.2414, -1.5931),and (5.7805, 7.9391).
- **6.** (-0.0484, 2.0609), (2.0823, 2.8986), and (4.9661, 1.1405).
- 7. a.




**b.** 438 wall clocks; \$40.92.

8. a.

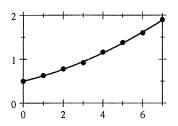


**b.** 1000 cameras; \$60.00.

- **9. a.** f(t) = 1.85t + 16.9.
  - b.



c.


| t | У    |
|---|------|
| 1 | 18.8 |
| 2 | 20.6 |
| 3 | 22.5 |
| 4 | 24.3 |
| 5 | 26.2 |
| 6 | 28.0 |

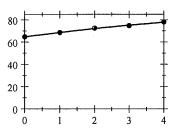
These values are close to the given data.

**d.** f(8) = 1.85(8) + 16.9 = 31.7 gallons.

**10. a.** 
$$f(t) = 0.0128t^2 + 0.109t + 0.50$$
.

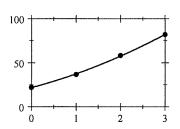
b.




c.

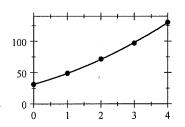
| t | у    |
|---|------|
| 0 | 0.50 |
| 3 | 0.94 |
| 6 | 1.61 |
| 7 | 1.89 |

These values are close to the given data.


**11. a.** 
$$f(t) = -0.221t^2 + 4.14t + 64.8$$
.

b.

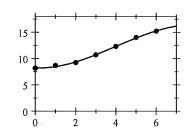



**12. a.** 
$$f(t) = 2.25x^2 + 13.41x + 21.76$$
.

b

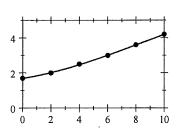


**13. a.** 
$$f(t) = 2.4t^2 + 15t + 31.4$$
.


b.



**14. a.** 
$$f(t) = -0.038167t^3 + 0.45713t^2$$


-0.19758t + 8.2457.

h



**15. a.** 
$$f(t) = -0.00081t^3 + 0.0206t^2 + 0.125t + 1.69$$
.

b.



c.

| t  | у   |  |
|----|-----|--|
| 1  | 1.8 |  |
| 5  | 2.7 |  |
| 10 | 4.2 |  |

The revenues were \$1.8 trillion in 2001, \$2.7 trillion in 2005, and \$4.2 trillion in 2010.