Exercises

In Exercises 1–4, verify directly that F is an antiderivative of f.

1.
$$F(x) = \frac{1}{3}x^3 + 2x^2 - x + 2; f(x) = x^2 + 4x - 1$$

2.
$$F(x) = xe^x + \pi$$
; $f(x) = e^x(1+x)$

3.
$$F(x) = \sqrt{2x^2 - 1}$$
; $f(x) = \frac{2x}{\sqrt{2x^2 - 1}}$

4.
$$F(x) = x \ln x - x; f(x) = \ln x$$

In Exercises 5–8, (a) verify that G is an antiderivative of f, (b) find all antiderivatives of f, and (c) sketch the graphs of a few members of the family of antiderivatives found in part (b).

5.
$$G(x) = 2x$$
; $f(x) = 2$

5.
$$G(x) = 2x$$
; $f(x) = 2$ **6.** $G(x) = 2x^2$; $f(x) = 4x$

7.
$$G(x) = \frac{1}{3}x^3; f(x) = x^2$$
 8. $G(x) = e^x; f(x) = e^x$

8.
$$G(x) = e^x; f(x) = e^x$$

In Exercises 9–50, find the indefinite integral.

$$9. \int 6 dx$$

10.
$$\int \sqrt{2} \, dx$$

11.
$$\int x^3 dx$$

$$12. \int 2x^5 dx$$

$$13. \int x^{-4} dx$$

14.
$$\int 3t^{-7} dt$$

15.
$$\int x^{2/3} dx$$

16.
$$\int 2u^{3/4} du$$

17.
$$\int x^{-5/4} dx$$

18.
$$\int 3x^{-2/3} \, dx$$

$$19. \int \frac{2}{x^3} dx$$

20.
$$\int \frac{1}{3x^5} dx$$

21.
$$\int \pi \sqrt{t} \, dt$$

$$22. \int \frac{3}{\sqrt{t}} dt$$

23.
$$\int (3-4x) dx$$

24.
$$\int (1 + u + u^2) \, du$$

25.
$$\int (x^2 + x + x^{-3}) dx$$

26.
$$\int (0.3t^2 + 0.02t + 2) dt$$

$$27. \int 5e^x dx$$

28.
$$\int (1 + e^x) dx$$

29.
$$\int (1+x+e^x) dx$$

29.
$$\int (1+x+e^x) dx$$
 30.
$$\int (2+x+2x^2+e^x) dx$$

31.
$$\int \left(4x^3 - \frac{2}{x^2} - 1 \right) dx$$

31.
$$\int \left(4x^3 - \frac{2}{x^2} - 1\right) dx$$
 32. $\int \left(6x^3 + \frac{3}{x^2} - x\right) dx$