Finally, solving for y', we have

$$y' = y\left(\frac{2}{x} + \frac{1}{x-1} + \frac{6x}{x^2+4}\right)$$
$$= x^2(x-1)(x^2+4)^3\left(\frac{2}{x} + \frac{1}{x-1} + \frac{6x}{x^2+4}\right)$$

Recall from Section 3.4 that the relative rate of change of a differentiable function O of x is Q'(x)/Q(x). In view of Rule 4, we see that the relative rate of change of Q at x can also be obtained by finding the derivative of ln Q. We exploit this fact in Example 7.

APPLIED EXAMPLE 7 Population Growth The population of a town t months after the opening of an auto assembly plant in the surrounding area is given by the function

$$P(t) = 18000e^{-(\ln 9)e^{-0.1t}}$$

What is the relative rate of growth of the population 6 months after the opening of the auto assembly plant?

We could find the required relative rate by computing P'(t)/P(t)Alternatively, we can proceed as follows:

$$\ln P(t) = \ln 18000e^{-(\ln 9)e^{-0.1t}}$$

$$= \ln 18000 + \ln e^{-(\ln 9)e^{-0.1t}}$$

$$= \ln 18000 - (\ln 9)e^{-0.1t} \qquad \ln e^{x} = x$$

$$\frac{d}{dt} \left[\ln P(t) \right] = \frac{d}{dt} \ln 18000 - \frac{d}{dt} \left(\ln 9 \right) e^{-0.1t}$$

$$= 0 - (\ln 9)(-0.1)e^{-0.1t} = (0.1)(\ln 9)e^{-0.1t}$$

$$= (0.1)(\ln 9)e^{-(0.1)(6)} \approx 0.121$$

opening of the auto assembly plant, the relative approximately 12.1% per month.

Check Exercises 5.5 can be found on

differentiation.

Exercises

In Exercises 1–34, find the derivative of the function

1.
$$f(x) = 5 \ln x$$

2.
$$f(x) = \ln 5x$$

$$3. f(x) = \ln(x+1)$$

4.
$$g(x) = \ln(2x + 1)$$

5.
$$f(x) = \ln x^8$$

6.
$$h(t) = 2 \ln t^5$$

7.
$$f(x) = \ln \sqrt{x}$$

8.
$$f(x) = \ln(\sqrt{x} + 1)$$

9.
$$f(x) = \ln \frac{1}{x^2}$$

10.
$$f(x) = \ln \frac{1}{2x^3}$$

11.
$$f(x) = \ln(4x^2 - 5x + 3)$$

12.
$$f(x) = \ln(3x^2 - 2x + 1)$$

13.
$$f(x) = \ln \frac{2x}{x+1}$$

14.
$$f(x) = \ln \frac{x+1}{x-1}$$

15.
$$f(x) = x^2 \ln x$$

16.
$$f(x) = 3x^2 \ln 2x$$

17.
$$f(x) = \frac{2 \ln x}{x}$$

18.
$$f(x) = \frac{3 \ln x}{x^2}$$

19.
$$f(u) = \ln(u-2)^3$$

20.
$$f(x) = \ln(x^3 - 3)^4$$

$$21. \ f(x) = \sqrt{\ln x}$$

$$22. \ f(x) = \sqrt{\ln x + x}$$

23.
$$f(x) = (\ln x)^2$$

24.
$$f(x) = 2(\ln x)^{3/2}$$

25.
$$f(x) = \ln(x^3 + 1)$$

26.
$$f(x) = \ln \sqrt{x^2 - 4}$$

$$27. f(x) = e^x \ln x$$

28.
$$f(x) = e^x \ln \sqrt{x+3}$$

29.
$$f(t) = e^{2t} \ln(t+1)$$

30.
$$g(t) = t^2 \ln(e^{2t} + 1)$$

31.
$$f(x) = \frac{\ln x}{x^2}$$

32.
$$g(t) = \frac{t}{\ln t}$$

$$33. f(x) = \ln(\ln x)$$

34.
$$g(x) = \ln(e^x + \ln x)$$

In Exercises 35–40, find the second derivative of the function.

35.
$$f(x) = \ln 2x$$

36.
$$f(x) = \ln(x+5)$$

37.
$$f(x) = \ln(x^2 + 2)$$

38.
$$f(x) = (\ln x)^2$$

39.
$$f(x) = x^2 \ln x$$

40.
$$g(x) = e^{2x} \ln x$$

In Exercises 41–50, use logarithmic differentiation to find the derivative of the function.

$$41 \quad y = (x + 1)^2(x + 2)$$

41.
$$y = (x + 1)^2(x + 2)^3$$
 42. $y = (3x + 2)^4(5x - 1)^2$

43.
$$y = (x - 1)^2(x + 1)^3(x + 3)^4$$

44.
$$y = \sqrt{3x+5}(2x-3)^4$$

45.
$$y = \frac{(2x^2 - 1)^5}{\sqrt{x + 1}}$$
 46. $y = \frac{\sqrt{4 + 3x^2}}{\sqrt[3]{x^2 + 1}}$

46.
$$y = \frac{\sqrt{4 + 3x^2}}{\sqrt[3]{x^2 + 1}}$$

47.
$$y = 3^x$$

48.
$$y = x^{x+2}$$

49.
$$y = (x^2 + 1)^x$$

50.
$$y = x^{\ln x}$$

In Exercises 51 and 52, use implicit differentiation to find dy/dx.

51.
$$\ln y - x \ln x = -1$$
 52. $\ln xy - y^2 = 5$

$$22. \ln xy - y^2 = 5$$

53. Find an equation of the tangent line to the graph of
$$y = x \ln x$$
 at the point $(1, 0)$.

54. Find an equation of the tangent line to the graph of
$$y = \ln x^2$$
 at the point $(2, \ln 4)$.

55. Determine the intervals where the function
$$f(x) = \ln x^2$$
 is increasing and where it is decreasing.

56. Determine the intervals where the function
$$f(x) = \frac{\ln x}{x}$$
 is increasing and where it is decreasing.

57. Determine the intervals of concavity for the graph of the function
$$f(x) = x^2 + \ln x^2$$
.

58. Determine the intervals of concavity for the graph of the function
$$f(x) = \frac{\ln x}{x}$$
.

59. Find the inflection points of the function
$$f(x) = \ln(x^2 + 1)$$
.

60. Find the inflection points of the function
$$f(x) = x^2 \ln x$$
.

61. Find an equation of the tangent line to the graph of
$$f(x) = x^2 + 2 \ln x$$
 at its inflection point.

62. Find an equation of the tangent line to the graph of
$$f(x) = e^{x/2} \ln x$$
 at its inflection point.
Hint: Show that $(1, 0)$ is the only inflection point of f .

63. Find the absolute extrema of the function
$$f(x) = x - \ln x$$
 on $\left[\frac{1}{2}, 3\right]$.

64. Find the absolute extrema of the function
$$g(x) = \frac{x}{\ln x}$$
 on [2, 5].

In Exercises 65 and 66, find dy/dx by implicit differentiation.

65.
$$\ln(xy) = x + y$$

66.
$$\ln x + e^{-y/x} = 10$$

In Exercises 67 and 68, find d^2y/dx^2 by implicit differentiation.

67.
$$\ln x + xy = 5$$

68.
$$\ln y + y = x$$

69. Find
$$dy/dx$$
 at the point $(1, 1)$ using implicit differentiation if $\ln y + xy = 1$.

70. Find an equation of the tangent line to the graph of the equation
$$\ln x + xe^y = 1$$
 at the point $(1, 0)$.

71. STRAIN ON VERTEBRAE The strain (percentage of compression) on the lumbar vertebral disks in an adult human as a function of the load
$$x$$
 (in kilograms) is given by

$$f(x) = 7.2956 \ln(0.0645012x^{0.95} + 1)$$

What is the rate of change of the strain with respect to the load when the load is 100 kg? When the load is 500 kg? Source: Benedek and Villars, Physics with Illustrative Examples from Medicine and Biology.