Exercises

In Exercises 1–8, find the derivative dy/dx (a) by solving each of the implicit equations for y explicitly in terms of x and (b) by differentiating each of the equations implicitly. Show that in each case, the results are equivalent.

$$1. x + 2y = 5$$

2.
$$3x + 4y = 6$$

3.
$$xy = 1$$

4.
$$xy - y - 1 = 0$$

$$\int x^3 - x^2 - xy = 0$$

5.
$$x^3 - x^2 - xy = 4$$
 6. $x^2y - x^2 + y - 1 = 0$

7.
$$\frac{x}{y} - x^2 = 1$$

7.
$$\frac{x}{y} - x^2 = 1$$
 8. $\frac{y}{x} - 2x^3 = 4$

In Exercises 9–30, find dy/dx by implicit differentiation.

9.
$$x^2 + y^2 = 16$$

10.
$$2x^2 + y^2 = 16$$

11.
$$x^2 - 2y^2 = 16$$

12.
$$x^3 + y^3 + y - 4 = 0$$

13.
$$x^2 - 2xy = 6$$
 14. $x^2 + 5xy + y^2 = 10$

14.
$$x^2 + 5xy + y^2 = 10$$

$$15. \ x^2y^2 - xy = 8$$

$$16. \ x^2y^3 - 2xy^2 = 5$$

17.
$$x^{1/2} + y^{1/2} = 1$$

18.
$$x^{1/3} + y^{1/3} = 1$$

19.
$$\sqrt{x + y} = x$$

20.
$$(2x + 3y)^{1/3} = x^2$$

21.
$$\frac{1}{r^2} + \frac{1}{r^2} = 1$$

22.
$$\frac{1}{r^3} + \frac{1}{v^3} = 5$$

23.
$$\sqrt{xy} = x + y$$

23.
$$\sqrt{xy} = x + y$$
 24. $\sqrt{xy} = 2x + y^2$

25.
$$\frac{x+y}{x-y} = 3x$$

25.
$$\frac{x+y}{x-y} = 3x$$
 26. $\frac{x-y}{2x+3y} = 2x$

27.
$$xy^{3/2} = x^2 + y^2$$

28.
$$x^2y^{1/2} = x + 2y^3$$

29.
$$(x+y)^3 + x^3 + y^3 = 0$$
 30. $(x+y^2)^{10} = x^2 + 25$

30.
$$(x + y^2)^{10} = x^2 + 25$$

In Exercises 31-34, find an equation of the tangent line to the graph of the function f defined by the equation at the indicated point.

31.
$$4x^2 + 9y^2 = 36$$
; (0, 2)

32.
$$y^2 - x^2 = 16$$
; $(2, 2\sqrt{5})$

33.
$$x^2y^3 - y^2 + xy - 1 = 0$$
; (1, 1)

34.
$$(x - y - 1)^3 = x$$
; $(1, -1)$

In Exercises 35–38, find the second derivative d^2y/dx^2 of each function defined implicitly by the equation.

35.
$$xy = 1$$

36.
$$x^3 + y^3 = 28$$

37.
$$y^2 - xy = 8$$

38.
$$x^{1/3} + y^{1/3} = 1$$

- 39. VOLUME OF A CYLINDER The volume of a right-circular cylinder of radius r and height h is $V = \pi r^2 h$. Suppose the radius and height of the cylinder are changing with respect to time t.
 - a. Find a relationship between dV/dt, dr/dt, and dh/dt.
 - b. At a certain instant of time, the radius and height of the cylinder are 2 and 6 in. and are increasing at the

rate of 0.1 in./sec and 0.3 in./sec, respectively. How fast is the volume of the cylinder increasing?

- 40. DISTANCE BETWEEN Two Cars A car leaves an intersection traveling west. Its position 4 sec later is 20 ft from the intersection. At the same time, another car leaves the same intersection heading north so that its position 4 sec later is 28 ft from the intersection. If the speeds of the cars at that instant of time are 9 ft/sec and 11 ft/sec, respectively, find the rate at which the distance between the two cars is changing.
- 41. Effect of Price on Demand for Tires Suppose the quantity demanded weekly of the Super Titan radial tires is related to its unit price by the equation

$$p + x^2 = 144$$

where p is measured in dollars and x is measured in units of a thousand. How fast is the quantity demanded weekly changing when x = 9, p = 63, and the price per tire is increasing at the rate of \$2/week?

42. Effect of Price on Supply of Tires Suppose the quantity x of Super Titan radial tires made available each week in the marketplace is related to the unit selling price by the equation

$$p - \frac{1}{2}x^2 = 48$$

where x is measured in units of a thousand and p is in dollars. How fast is the weekly supply of Super Titan radial tires being introduced into the marketplace changing when x = 6, p = 66, and the price per tire is decreasing at the rate of \$3/week?

43. Effect of Price on Demand for Headphones The demand equation for a certain brand of two-way headphones is

$$100x^2 + 9p^2 = 3600$$

where x represents the number (in thousands) of headphones demanded each week when the unit price is p. How fast is the quantity demanded increasing when the unit price per headphone is \$14 and the price is dropping at the rate of \$0.15/headphone/week?

Hint: To find the value of x when p = 14, solve the equation $100x^2 + 9p^2 = 3600$ for x when p = 14.

44. Effect of Price on Supply of Eggs Suppose the wholesale price of a certain brand of medium-sized eggs p (in dollars per carton) is related to the weekly supply x (in thousands of cartons) by the equation

$$625p^2 - x^2 = 100$$

If 25,000 cartons of eggs are available at the beginning of a certain week and the price is falling at the rate of 2¢/carton/week, at what rate is the weekly supply falling? Hint: To find the value of p when x = 25, solve the supply equation for p when x = 25.