- **8.** Let g be the function defined by $g(u) = (3u 2)^{3/2}$. Find g(1), g(6), $g(\frac{11}{3})$, and g(u+1).
- **9.** Let f be the function defined by $f(t) = \frac{2t^2}{\sqrt{t-1}}$. Find f(2), f(a), f(x+1), and f(x-1).
- 10. Let f be the function defined by $f(x) = 2 + 2\sqrt{5 x}$. Find f(-4), f(1), $f(\frac{11}{4})$, and f(x+5).
- 11. Let f be the function defined by

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \le 0\\ \sqrt{x} & \text{if } x > 0 \end{cases}$$

Find f(-2), f(0), and f(1).

12. Let g be the function defined by

$$g(x) = \begin{cases} -\frac{1}{2}x + 1 & \text{if } x < 2\\ \sqrt{x - 2} & \text{if } x \ge 2 \end{cases}$$

Find g(-2), g(0), g(2), and g(4).

13. Let f be the function defined by

$$f(x) = \begin{cases} -\frac{1}{2}x^2 + 3 & \text{if } x < 1\\ 2x^2 + 1 & \text{if } x \ge 1 \end{cases}$$

Find f(-1), f(0), f(1), and f(2)

14. Let f be the function defined by

$$f(x) = \begin{cases} 2 + \sqrt{1 - x} & \text{if } x \le 1\\ \frac{1}{1 - x} & \text{if } x > 1 \end{cases}$$

Find f(0), f(1), and f(2).

15. Refer to the graph of the function f in the following figure.

- **a.** Find the value of f(0).
- **b.** Find the value of x for which (i) f(x) = 3 and (ii) f(x) = 0.
- **c.** Find the domain of f.
- **d.** Find the range of f.

16. Refer to the graph of the function f in the following figure.

- **a.** Find the value of f(7).
- **b.** Find the values of x corresponding to the point(s) on the graph of f located at a height of 5 units from the
- c. Find the point on the x-axis at which the graph of fcrosses it. What is the value of f(x) at this point?
- **d.** Find the domain and range of f.

In Exercises 17-20, determine whether the point lies on the graph of the function.

17.
$$(2, \sqrt{3}); g(x) = \sqrt{x^2 - 1}$$

18.
$$(3,3); f(x) = \frac{x+1}{\sqrt{x^2+7}} + 2$$

19.
$$(-2, -3); f(t) = \frac{|t-1|}{t+1}$$

20.
$$\left(-3, -\frac{1}{13}\right)$$
; $h(t) = \frac{|t+1|}{t^3+1}$

In Exercises 21 and 22, find the value of c such that the point P(a, b) lies on the graph of the function f.

21.
$$f(x) = 2x^2 - 4x + c$$
; $P(1, 5)$

22.
$$f(x) = x\sqrt{9-x^2} + c$$
; $P(2,4)$

In Exercises 23–36, find the domain of the function.

23.
$$f(x) = x^2 + 3$$

24.
$$f(x) = 7 - x^2$$

25.
$$f(x) = \frac{3x+1}{x^2}$$
 26. $g(x) = \frac{2x+1}{x-1}$

26.
$$g(x) = \frac{2x+1}{x-1}$$

27.
$$f(x) = \sqrt{x^2 + 1}$$
 28. $f(x) = \sqrt{x - 5}$

28.
$$f(x) = \sqrt{x-5}$$

29.
$$f(x) = \sqrt{5-x}$$

29.
$$f(x) = \sqrt{5-x}$$
 30. $g(x) = \sqrt{2x^2+3}$

31.
$$f(x) = \frac{x}{x^2 - 1}$$

31.
$$f(x) = \frac{x}{x^2 - 1}$$
 32. $f(x) = \frac{1}{x^2 + x - 2}$

33.
$$f(x) = (x+3)^{3/2}$$

33.
$$f(x) = (x+3)^{3/2}$$
 34. $g(x) = 2(x-1)^{5/2}$