

5.1 Estimating with Finite Sums (6)

Rectangular Approximation Method (RAM)

Left - hand RAM less than exact value?

Midpoint RAM

Right - hand RAM greater than exact value?

5.1 Estimating with Finite Sums (7)

Rectangular Approximation Method (RAM)

Left - hand RAM

less than exact value

8 / 84

$$(0)^{2} \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right) + (1)^{2} \left(\frac{1}{2}\right) + \left(\frac{3}{2}\right)^{2} \left(\frac{1}{2}\right) + (2)^{2} \left(\frac{1}{2}\right) + \left(\frac{5}{2}\right)^{2} \left(\frac{1}{2}\right)$$

$$=6.875$$

Rectangular Approximation Method (RAM)

six intervals

$$\left(\frac{1}{4}\right)^{2} \left(\frac{1}{2}\right) + \left(\frac{3}{4}\right)^{2} \left(\frac{1}{2}\right) + \left(\frac{5}{4}\right)^{2} \left(\frac{1}{2}\right) + \left(\frac{7}{4}\right)^{2} \left(\frac{1}{2}\right) + \left(\frac{9}{4}\right)^{2} \left(\frac{1}{2}\right) + \left(\frac{11}{4}\right)^{2} \left(\frac{1}{2}\right)$$

Midpoint RAM

0 (84

(contill (2)

5.1 Estimating with Finite Sums (9)

Rectangular Approximation Method (RAM)

six intervals

$$\left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right) + \left(1\right)^2 \left(\frac{1}{2}\right) + \left(\frac{3}{2}\right)^2 \left(\frac{1}{2}\right) +$$

$$(2)^2 \left(\frac{1}{2}\right) + \left(\frac{5}{2}\right)^2 \left(\frac{1}{2}\right) + (3)^2 \left(\frac{1}{2}\right)$$

Right-hand RAM

less than

exact value

10 / 84

4-----

5.1 Estimating with Finite Sums (10)

Rectangular Approximation Method (RAM)

n	LRAM _n	MRAM _n	$RRAM_{\scriptscriptstylen}$
6	6.875	8.9375	11.375
12	7.980625	8.984375	10.15625
24	8.4453125	8.99609375	9.5703125
48	8.720703125	8.999023438	9.283203125
100	8.86545	8.999775	9.13545
1000	8.9865045	8.99999775	9.0135045

8 - 3 - 0 0.5 1 1.5 2 2.5 3

All three sums approach the same number

Definition: The Definite Integral

Area and the Definite Integral

Let f(x) be defined on [a,b]. If

$$\lim_{n \to \infty} \left[f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n) \right] \Delta x$$

exists for all choices of representative points $x_1, x_2, x_3, \dots x_n$ in the n subintervals of [a,b] of equal width $\Delta x = \frac{b-a}{n}$, then this limit is called the **definite integral of f(x) from a to b** and is denoted by $\int f(x) dx$.

The number \mathbf{a} is the lower limit of integration, and the number \mathbf{b} is the upper limit of integration.

Area and the Definite Integral

Definition: The Definite Integral

Thus

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \left[f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n) \right] \Delta x$$

As long as f(x) is a **continuous** function on a closed interval, **it** has a **definite integral** on that interval. f(x) is said to be **integrable** when its integral exists.

(mill)

Area and the Definite Integral

The Definite Integral

Please make this important distinction between the indefinite integral of a function and the definite integral of a function:

The indefinite integral of a function is another

function. example:
$$\int x dx = \frac{x^2}{2} + C$$

The definite integral of a function is a number.

example:
$$\int_{1}^{3} x \, dx = 4$$
 You will learn how to calculate this number in the next section of your textbook.