sle

N y=1
N\
N\
05 \
R \
N
\
\
N A\
T s ——* i I\
1
), 1)
(2:3)
"
|
05 \
5 \
B
PIVITTVIITEIITEN
05 % ol 025 05 075 1 ¢ - !

(a) & s (b) 3 $ »
As the number of rectangles increased, the approximation of the
area under the curve approaches a value.

5.1 Estimating with Finite Sums ()
Rectangular Approximation Method (RAM)

A

Left-hand RAM Midpoint RAM Right-hand RAM
greater than

less than

exact value ? exact value ?

e Qe p——

5.1 Estimating with Finite Sums ()
Rectangular Approximation Method (RAM)

six intervals

or(3):(3) (3) 3"
e B6eRE 66
Left-hand RAM =6.875

less than

exact value

=

SRR R W]



5.1 Estimating with Finite Sums s
Rectangular Approximation Method (RAM)
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5.1 Estimating with Finite Sums (9)
Rectangular Approximation Method (RAM)
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5.1 Estimating with Finite Sums (10
Rectangular Approximation Method (RAM)

n LRAM, MRAM, RRAM,

6 6.875 8.9375 11.375

12 7.980625 8984375  10.15625

24 84453125  8.99609375  9.5703125
48 8720703125 8.999023438 9.283203125
100 8.86545 8.999775 9.13545
1000 899999775  9.0135045

8.9865045

All three sums approach
the same number
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Area and the Definite Integral

Area Under A Curve

Definition: A sum such as the one below is called a Riemann
sum:
b—a

[f(xl)+f(x:,)+ flx) +4.4+f(xn)JAx where Ax = =

Cua Q> w3

Area and the Definite Integral

Area Under A Curve

The area under a curve can be approached by taking an infinite
Riemann sum.

Area and the Definite Integral

Definition: The Definite Integral

Let f(x) be defined on [a,b]. If

lim_[£Qe)+ £le) + flag) + ot fx,)Ax

exists for all choices of representative points x,, x,, X5, ... X,
in the n subintervals of [a,b] of equal width Ax= ﬂ , then
this limit is called the definite integral of f(x) fr't#n atob
and is denoted by.ff(,\-)(b' :

a

The number a is the lower limit of integration, and the
number b is the upper limit of integration.
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Area and the Definite Integral

Definition: The Definite Integral

Thus

[ f)de = lim, [ £(x)+ () + f(x)+ot flx,)]Ax

As long as f(x) is a continuous function on a closed inferval, it
has a definite integral on that interval. f(x) is said to be
integrable when its integral exists.

- MR MHawa Q» oo

Area and the Definite Integral

The Definite Integral

Please make this important distinction between the indefinite
integral of a function and the definite integral of a function:

The indefinite integral of a function is another

function. example: jxdx = % +C

The definite integral of a function is a number.

You will learn how to calculate this number
in the next section of your textbook.

example: _[x dx = 4
1
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