5.6 Exponential Functions as Mathematical Models

Concept Questions

page 398

- 1. $Q(t) = Q_0 e^{kt}$ where k > 0 represents exponential growth and k < 0 represents exponential decay. The larger the magnitude of k, the more quickly the former grows and the more quickly the latter decays.
- 2. The half-life of a radioactive substance is the time it takes for the substance to decay to half its original amount.
- 3. $Q(t) = \frac{A}{1 + Be^{-kt}}$, where A, B, and k are positive constants. Q increases rapidly for small values of t but the rate of increase slows down as Q (always increasing) approaches the number A.

Exercises

page 399

1. a. The growth constant is k = 0.02.

- **2. a.** k = -0.06.
- **b.** Initially, there are 300 units present.

b. $Q_0 = 2000$.

 t
 0
 10
 20
 100
 1000

 Q
 300
 366
 448
 2217
 1.46×10^{11}

t	0	5	10	20	100
Q	2000	1482	1098	602	5

- **3. a.** $Q(t) = Q_0 e^{kt}$. Here $Q_0 = 100$ and so $Q(t) = 100 e^{kt}$. Because the number of cells doubles in 20 minutes, we have $Q(20) = 100 e^{20k} = 200$, $e^{20k} = 2$, $20k = \ln 2$, and so $k = \frac{1}{20} \ln 2 \approx 0.03466$. Thus, $Q(t) = 100 e^{0.03466t}$.
 - **b.** We solve the equation $100e^{0.03466t} = 1,000,000$, obtaining $e^{0.03466t} = 10,000$, $0.03466t = \ln 10,000$, and so $t = \frac{\ln 10,000}{0.03466} \approx 266$, or 266 minutes.
 - **c.** $Q(t) = 1000e^{0.03466t}$.
- **4.** $Q(t) = 5.3e^{kt}$. Because the population grows at the rate of 2% per year, we have $N(t) = 5.3e^{0.02t}$. Note that t = 0 corresponds to the beginning of 1990.

a.

t	Q(t)	
1990	5.3	
1995	5.86	
2000	6.47	
2005	7.15	
2010	7.91	
2015	8.74	
2020	9.66	
2025	10.67	

- **b.** $Q'(t) = 5.3 (0.02) e^{0.02t} = 0.106 e^{0.02t}$, so the rate of growth in the year 2010 is $Q'(20) = 0.106 e^{0.02(20)} \approx 0.1581$, or approximately 0.16 billion people per year.
- **5. a.** We solve the equation $5.3e^{0.02t} = 3$ (5.3), obtaining $e^{0.02t} = 3$, $0.02t = \ln 3$, and so $t = \frac{\ln 3}{0.02} \approx 54.93$. Thus, the world population will triple in approximately 54.93 years.
 - **b.** If the growth rate is 1.8%, then proceeding as before, we find $N(t) = 5.3e^{0.018t}$. If t = 54.93, the population would be $N(54.93) = 5.3e^{0.018(54.93)} \approx 14.25$, or approximately 14.25 billion.

- 6. The resale value of the machinery at any time t is given by $V(t) = 500,000e^{-kt}$, where t = 0 represents three years ago. We have $V(3) = 320,000 = 500,000e^{-3k}$, which gives $e^{-3k} = \frac{320,000}{500,000} = 0.64$. Therefore, $-3k \ln e = \ln 0.64$ and $k = \frac{\ln 0.64}{-3} \approx 0.149$. Four years from now, the resale value of the machinery will be $V(7) = 500,000e^{-(0.149)(7)} \approx 176,198$, or approximately \$176,198.
- 7. $P(h) = p_0 e^{-kh}$, so $P(0) = p_0 = 15$. Thus, $P(4000) = 15e^{-4000k} = 12.5$, $e^{-4000k} = \frac{12.5}{15}$, $-4000k = \ln\left(\frac{12.5}{15}\right)$, and so k = 0.00004558. Therefore, $P(12,000) = 15e^{-0.00004558(12,000)} = 8.68$, or 8.7 lb/in^2 . The rate of change of atmospheric pressure with respect to altitude is given by $P'(h) = \frac{d}{dh}\left(15e^{-0.00004558h}\right) = -0.0006837e^{-0.00004558h}$. Thus, the rate of change of atmospheric pressure with respect to altitude when the altitude is 12,000 feet is $P'(12,000) = -0.0006837e^{-0.00004558(12,000)} \approx -0.00039566$. That is, it is declining at the rate of approximately $0.0004 \text{ lb/in}^2/\text{ft}$.
- 8. We are given that Q(280) = 20. Using this condition, we have $Q(280) = Q_0 \cdot 2^{-280/140} = 20$. Thus, $Q_0 \cdot 2^{-2} = 20$, so $\frac{1}{4}Q_0 = 20$ and $Q_0 = 80$. Thus, the initial amount was 80 mg.
- 9. Suppose the amount of P-32 at time t is given by $Q(t) = Q_0 e^{-kt}$, where Q_0 is the amount present initially and k is the decay constant. Because this element has a half-life of 14.2 days, we have $\frac{1}{2}Q_0 = Q_0 e^{-14.2k}$, so $e^{-14.2k} = \frac{1}{2}$, $-14.2k = \ln \frac{1}{2}$, and $k = -\frac{\ln(1/2)}{14.2} \approx 0.0488$. Therefore, the amount of P-32 present at any time t is given by $Q(t) = 100e^{-0.0488t}$. In particular, the amount left after 7.1 days is given by $Q(7.1) = 100e^{-0.0488(7.1)} = 100e^{-0.34648} \approx 70.717$, or 70.717 grams. The rate at which the element decays is $Q'(t) = \frac{d}{dt} \left(100e^{-0.0488t}\right) = 100 \left(-0.0488\right) e^{-0.0488t} = -4.88e^{-0.0488t}$. Therefore, $Q'(7.1) = -4.88e^{-0.0488(7.1)} \approx -3.451$; that is, it is decreasing at the rate of 3.451 g/day.
- 10. Suppose the amount of Sr-90 present at time t is given by $Q(t) = Q_0 e^{-kt}$, where Q_0 is the amount present initially and k is the decay constant. Because this element has a half-life of 27 years, we find $\frac{1}{2}Q_0 = Q_0 e^{-27k}$, $e^{-27k} = \frac{1}{2}$, $-27k = \ln \frac{1}{2}$, and so $k = -\frac{1}{27} \ln \frac{1}{2}$. Therefore, the amount of Sr-90 present at time t is given by $Q(t) = Q_0 e^{(1/27)\ln(1/2) \cdot t} = Q_0 e^{(t/27)\ln(1/2)} = Q_0 \left(\frac{1}{2}\right)^{t/27}$. To find t when $Q(t) = \frac{1}{4}Q_0$, we calculate $\frac{1}{4}Q_0 = Q_0 \left(\frac{1}{2}\right)^{t/27}$, $\left(\frac{1}{2}\right)^{t/27} = \frac{1}{4}$, $\frac{1}{27}t \ln \frac{1}{2} = \ln \frac{1}{4}$, $t = 27\frac{\ln \frac{1}{4}}{\ln \frac{1}{2}} = 27\left(\frac{-\ln 4}{-\ln 2}\right) \approx 54$, or approximately 54 years.
- 11. We solve the equation $0.2Q_0 = Q_0e^{-0.00012t}$, obtaining $\ln 0.2 = -0.00012t$ and $t = \frac{\ln 0.2}{-0.00012} \approx 13,412$, or approximately 13,412 years.
- 12. We solve the equation $0.18Q_0 = Q_0e^{-0.00012t}$, obtaining $\ln 0.18 = -0.00012t$ and $t = \frac{\ln 0.18}{-0.00012} \approx 14,290$, or approximately 14,290 years.
- 13. a. $f(t) = 157e^{-0.55t}$, so $f'(t) = 157(-0.55)e^{-0.55t} = -86.35e^{-0.55t}$. So the number of annual bank failures was changing at the rate of $f'(1) \approx -49.82$; that is, it was dropping at the rate of approximately 50/year in 2011. b. The projected number of failures in 2013 is $f(3) = 157e^{-0.55(3)} \approx 30.15$, or approximately 30.

14.
$$f(t) = 172.2e^{0.031t}$$
.

a. The projected number of online shoppers (in millions) from 2010 through 2015 is shown in the table.

t	0	1	2	3	4	5
f(t)	172.2	177.6	183.2	189.0	194.9	201.1

- **15.** a. $S = S_0 e^{-kt}$, so $S(0) = S_0 = 100$. Thus, $S(t) = 100 e^{kt}$. Next, S(5) = 150 gives $100 e^{5k} = 150$, so $e^{5k} = \frac{150}{100} = 1.5$, $5k = \ln 1.5$, and $k \approx 0.0811$. Thus, the model is $S(t) = 100 e^{0.0811t}$.
 - **b.** The sales of Garland Corporation in 2013 were $S(3) = 100e^{0.0811(3)} \approx 127.5$, or approximately \$127.5 million.

16.

- **a.** $Q(0) = 120(1 e^0) + 60 = 60$, or 60 wpm.
- **b.** $Q(10) = 120(1 e^{-0.5}) + 60 = 107.22$, or approximately 107 wpm.
- **c.** $Q(20) = 120(1 e^{-1}) + 60 = 135.65$, or approximately 136 wpm.

17.

- a. The percentage of 16-year-olds with a driver's license was $P(16) = 90 \left[1 e^{-0.37(16-15)}\right] \approx 27.8$, or approximately 27.8.
- **b.** The percentage of 20-year-olds with a driver's license was $P(2) = 90 \left[1 e^{-0.37(20-15)}\right] \approx 75.8$, or approximately 75.8.
- c. The percentage of 39-year-olds with a driver's license was $P(39) = 90 \left[1 e^{-0.37(39-15)}\right] \approx 90.0, \text{ or approximately } 90.0.$
- 18. a. $S(t) = 50,000 + Ae^{-kt}$. Using the condition S(1) = 83,515 and S(3) = 65,055, we have $S(1) = 50,000 + Ae^{-k} = 83,515$ and $S(3) = 50,000 + Ae^{-3k} = 65,055$. The first equation gives $Ae^{-k} = 33,515$ and the second gives $Ae^{-3k} = 15055$, so $\frac{Ae^{-k}}{Ae^{-3k}} = \frac{33,515}{15,055}$, $e^{2k} = \frac{33,515}{15,055}$, and $k = \frac{1}{2} \ln \frac{33,515}{15,055} \approx 0.40014$.
 - **b.** $A = 33,515e^k = 33,515e^{0.40014} = 50,006$, so $S(t) = 50,000 + 50,006e^{-0.40014t}$. In particular, $S(4) = 50,000 + 50006e^{-0.40014(4)} \approx 60,090$, or approximately \$60,090.
 - **c.** $S'(t) = \frac{d}{dt} \left(50,000 + 50,006e^{-0.40014t} \right) = 50,006 \left(-0.40014 \right) e^{-0.40014t} = -20,009.4e^{-0.40014t}$, and so $S'(4) = -20,009.4e^{-0.40014(4)} \approx -4037.6$. That is, the sales volume is falling by approximately \$4038/week.

19.

a. After 1 month, the demand is

$$D(1) = 2000 - 1500e^{-0.05} \approx 573$$
, after 12 months it is $D(12) = 2000 - 1500e^{-0.6} \approx 1177$, after 24 months it is $D(24) = 2000 - 1500e^{-1.2} \approx 1548$, and after 60 months, it is $D(60) = 2000 - 1500e^{-3} \approx 1925$.

b. $\lim_{t \to \infty} D(t) = \lim_{t \to \infty} (2000 - 1500e^{-0.05t}) = 2000$, and we conclude that the demand is expected to stabilize at 2000 computers per month.

c. $D'(t) = -1500e^{-0.05t}$ $(-0.05) = 75e^{-0.05t}$. Therefore, the rate of growth after 10 months is $D'(10) = 75e^{-0.5} \approx 45.49$, or approximately 46 computers per month.

20. a. The proportion that will fail after 3 years is $P(3) = 100 (1 - e^{-0.3}) \approx 25.92\%$. Therefore, 74% will be usable.

b. $\lim_{t \to \infty} P(t) = \lim_{t \to \infty} 100 \left(1 - e^{-0.1t}\right) = 100$, so all will eventually fail, as one might expect.

21. a. The length is given by $f(5) = 200 (1 - 0.956e^{-0.18.5}) \approx 122.26$, or approximately 122.3 cm.

b. $f'(t) = 200 (-0.956) e^{-0.18t} (-0.18) = 34.416 e^{-0.18t}$, so a 5-year-old is growing at the rate of $f'(5) = 34.416 e^{-0.18(5)} \approx 13.9925$, or approximately 14 cm/yr.

c. The maximum length is given by $\lim_{t \to \infty} 200 (1 - 0.956e^{-0.18t}) = 200$, or 200 cm.

22. a. $Q(1) = \frac{1000}{1 + 199e^{-0.8}} \approx 11.06$, or 11 children.

b. $Q(10) = \frac{1000}{1 + 199e^{-8}} \approx 937.4$, or 937 children.

c. $\lim_{t \to \infty} \frac{1000}{1 + 199e^{-0.8t}} = 1000$, or 1000 children.

23. a. $N(0) = \frac{400}{1+39} = 10$ flies.

b. $\lim_{t \to \infty} \frac{400}{1 + 39e^{-0.16t}} = 400$ flies.

c. $N(20) = \frac{400}{1 + 39e^{-0.16(20)}} \approx 154.5$, or 154 flies.

d. $N'(t) = \frac{d}{dt} \left[400 \left(1 + 39e^{-0.16t} \right)^{-1} \right] = -400 \left(1 + 39e^{-0.16t} \right)^{-2} \frac{d}{dt} \left(39e^{-0.16t} \right) = \frac{2496e^{-0.16t}}{\left(1 + 39e^{-0.16t} \right)^2}, \text{ so}$

 $N'(20) = \frac{2496e^{-0.16\cdot 20}}{(1+39e^{-0.16\cdot 20})^2} \approx 15.17$, or approximately 15 fruit flies per day.

24. The projected population of citizens aged 45–64 in 2010 is $P(20) = \frac{197.9}{1 + 3.274e^{-0.0361(20)}} \approx 76.3962$, or 76.4 million.

25.
$$f(t) = \frac{40e^{-(t-1975)/20}}{\left[1 + e^{-(t-1975)/20}\right]^2}$$
. Let $u = (t-1975)/20$. Then $\frac{du}{dt} = \frac{1}{20}$ and
$$f'(t) = f'(u)\frac{du}{dt} = 40 \cdot \frac{\left(1 + e^{-u}\right)^2(-1) - e^{-u}(2)\left(1 + e^{-u}\right)e^{-u}(-1)}{\left(1 + e^{-u}\right)^4} \left(\frac{1}{20}\right)$$
$$= 2 \cdot \frac{\left(1 + e^{-u}\right)e^{-u}\left[-\left(1 + e^{-u}\right) + 2e^{-u}\right]}{\left(1 + e^{-u}\right)^4} = \frac{2e^{-u}\left(e^{-u} - 1\right)}{\left(1 + e^{-u}\right)^3} = \frac{2e^{-(t-1975)/20}\left[e^{-(t-1975)/20} - 1\right]}{\left[1 + e^{-(t-1975)/20}\right]^3}.$$

Setting f'(t) = 0 gives $e^{-(t-1975)/20} = 1$, so $-(t-1975)/20 = \ln 1 = 0$ and t = 1975 is a critical number of f. From the sign diagram, we see that f has a relative maximum value at t = 1975. Since t = 1975 is the only critical number in the

interval (1900, 2010), we see that it gives an absolute maximum value of f (1975) ≈ 10 . We conclude that the maximum rate of production of crude oil in the U.S. occurred around 1975 and was approximately 10 million barrels per day.

- **26.** The expected population of the U.S. in 2020 is $P(3) = \frac{616.5}{1 + 4.02e^{-0.5(3)}} \approx 324.99$, or approximately 325 million people.
- 27. The first of the given conditions implies that f(0) = 300, that is, $300 = \frac{3000}{1 + Be^0} = \frac{3000}{1 + B}$. Thus, 1 + B = 10, and B = 9. Therefore, $f(t) = \frac{3000}{1 + 9e^{-kt}}$. Next, the condition f(2) = 600 gives the equation $600 = \frac{3000}{1 + 9e^{-2k}}$, so $1 + 9e^{-2k} = 5$, $e^{-2k} = \frac{4}{9}$, and $k = -\frac{1}{2} \ln \frac{4}{9}$. Therefore, $f(t) = \frac{3000}{1 + 9e^{(1/2)t \cdot \ln(4/9)}} = \frac{3000}{1 + 9\left(\frac{4}{9}\right)^{t/2}}$. The number of students who had heard about the policy four hours later is given by $f(4) = \frac{3000}{1 + 9\left(\frac{4}{9}\right)^{t/2}} = 1080$, or

1080 students. To find the rate at which the rumor was spreading at any time time, we compute $f'(t) = \frac{d}{dt} \left[3000 \left(1 + 9e^{-0.405465t} \right)^{-1} \right] = (3000) (-1) \left(1 + 9e^{-0.405465} \right)^{-2} \frac{d}{dt} \left(9e^{-0.405465t} \right)$ $= -3000 (9) \left(-0.405465 \right) e^{-0.405465t} \left(1 + 9e^{-0.405465t} \right)^{-2} = \frac{10947.555e^{-0.405465t}}{\left(1 + 9e^{-0.405465t} \right)^2}.$

In particular, the rate at which the rumor was spreading 4 hours after the ceremony is given by $f'(4) = \frac{10947.555e^{-0.405465.4}}{\left(1 + 9e^{-0.405465.4}\right)^2} \approx 280.26$. Thus, the rumor is spreading at the rate of 280 students per hour.

- **28.** a. $f(t) = 6 + 4e^{-2t}$, so $f'(t) = -8e^{-2t} < 0$ for all t in $(0, \infty)$. Thus, f is decreasing on $(0, \infty)$.
 - **b.** $f''(t) = 16e^{-2t} > 0$ for all t in $(0, \infty)$, so f is concave upward on $(0, \infty)$.

c.
$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} (6 + 4e^{-2t}) = 6.$$

29.
$$x(t) = \frac{15\left(1-\left(\frac{2}{3}\right)^{3t}\right)}{1-\frac{1}{4}\left(\frac{2}{3}\right)^{3t}}$$
, so $\lim_{t\to\infty} x(t) = \lim_{t\to\infty} \frac{15\left[1-\left(\frac{2}{3}\right)^{3t}\right]}{1-\frac{1}{4}\left(\frac{2}{3}\right)^{3t}} = \frac{15(1-0)}{1-0} = 15$, or 15 lb.

30. a. $f'(t) = \frac{d}{dt} \left[a \left(1 - be^{-kt} \right) \right] = \frac{d}{dt} \left(a \right) - \frac{d}{dt} abe^{-kt} = 0 - be^{-kt} \left(-k \right) = bke^{-kt}$. Because f'(t) > 0 for all $t \ge 0$, f is increasing on $(0, \infty)$.

b. $f''(t) = \frac{d}{dt} (bke^{-kt}) = -bk^2e^{-kt} < 0$ on $(0, \infty)$, and the conclusion follows.

 $\mathbf{c.} \lim_{t \to \infty} f(t) = \lim_{t \to \infty} \left[a \left(1 - be^{-kt} \right) \right] = \lim_{t \to \infty} a - \lim_{t \to \infty} abe^{-kt}$ = a - 0 = a.

31. a. $C(t) = \frac{k}{b-a} \left(e^{-at} - e^{-bt} \right)$, so $C'(t) = \frac{k}{b-a} \left(-ae^{-at} + be^{-bt} \right) = \frac{kb}{b-a} \left[e^{-bt} - \left(\frac{a}{b} \right) e^{-at} \right] = \frac{kb}{b-a} e^{-bt} \left[1 - \frac{a}{b} e^{(b-a)t} \right].$ $C'(t) = 0 \text{ implies that } 1 = \frac{a}{b} e^{(b-a)t}, \text{ or } t = \frac{\ln\left(\frac{b}{a}\right)}{b-a}. \text{ The sign}$ diagram of C' shows that this value of t gives a maximum. $\frac{\ln\frac{b}{a}}{b-a}$

32. a. $\lim_{t\to\infty} \left[\frac{r}{k} - \left(\frac{r}{k} - C_0\right)e^{-kt}\right] = \frac{r}{k}$, and this shows that in the long run the concentration of the glucose solution approaches $\frac{r}{k}$.

b. $C'(t) = -\left(\frac{r}{k} - C_0\right)e^{-kt}$ $(-k) = k\left(\frac{r}{k} - C_0\right)e^{-kt} > 0$ for all t > 0 because $\frac{r}{k} > C_0$ for all t > 0. Thus, C is increasing on $(0, \infty)$.

r/k C_0

- **33. a.** We solve $Q_0 e^{-kt} = \frac{1}{2} Q_0$ for t, obtaining $e^{-kt} = \frac{1}{2}$, $\ln e^{-kt} = \ln \frac{1}{2} = \ln 1 \ln 2 = -\ln 2$, $-kt = -\ln 2$, and so $\overline{t} = \frac{\ln 2}{k}$.
 - **b.** $\bar{t} = \frac{\ln 2}{0.0001238} \approx 5598.927$, or approximately 5599 years.

34. a.
$$Q'(t) = \frac{d}{dt} \left(\frac{A}{1 + Be^{-kt}} \right) = A \frac{d}{dt} \left(1 + Be^{-kt} \right)^{-1} = -A \left(1 + Be^{-kt} \right)^{-2} \frac{d}{dt} \left(1 + Be^{-kt} \right)$$
$$= -A \left(1 + Be^{-kt} \right)^{-2} \left(-kBe^{-kt} \right) = \frac{kABe^{-kt}}{\left(1 + Be^{-kt} \right)^2}$$
(1)

Next,

$$kQ\left(1 - \frac{Q}{A}\right) = k\left(\frac{A}{1 + Be^{-kt}}\right)\left(1 - \frac{1}{1 + Be^{-kt}}\right) = k\left(\frac{A}{1 + Be^{-kt}}\right)\left(\frac{1 + Be^{-kt} - 1}{1 + Be^{-kt}}\right) = \frac{kABe^{-kt}}{\left(1 + Be^{-kt}\right)^2}$$
(2).

The desired result follows by comparing equations (1) and (2)

- **b.** Because Q(t) < A, $Q' = kQ\left(1 \frac{Q}{A}\right) > 0$, and we see that Q is increasing on $(0, \infty)$.
- 35. **a.** From the results of Exercise 34, we have $Q' = kQ\left(1 \frac{Q}{A}\right)$, so $Q'' = \frac{d}{dt}\left(kQ \frac{k}{A}Q^2\right) = kQ' \frac{2k}{A}QQ' = \frac{k}{A}Q'(A 2Q). \text{ Setting } Q'' = 0 \text{ gives } Q = \frac{A}{2} \text{ since } Q' > 0 \text{ for all } t. \text{ Furthermore, } Q'' > 0 \text{ if } Q < \frac{A}{2} \text{ and } Q'' < 0 \text{ if } Q > \frac{A}{2}. \text{ So the graph of } Q \text{ has an inflection point when } Q = \frac{A}{2}. \text{ To find the value of } t, \text{ we solve the equation } \frac{A}{2} = \frac{A}{1 + Be^{-kt}}, \text{ obtaining } 1 + Be^{-kt} = 2, Be^{-kt} = 1, e^{-kt} = \frac{1}{B}, -kt = \ln\frac{1}{B} = -\ln B, \text{ and so } t = \frac{\ln B}{k}.$
 - **b.** The quantity Q increases most rapidly at the instant of time when it reaches one-half of the maximum quantity. This occurs at $t = \frac{\ln B}{k}$.
- 36. $Q(t) = \frac{A}{1 + Be^{-kt}}$, so $Q(t_1) = \frac{A}{1 + Be^{-kt_1}} = Q_1$ implies that $A = Q_1 + Q_1e^{-kt_1}B$, so $e^{-kt_1} = \frac{A Q_1}{BQ_1}$ (1). Next, we have $Q(t_2) = \frac{A}{1 + Be^{-kt_2}} = Q_2$, and this leads to $e^{-kt_2} = \frac{A Q_2}{BQ_2}$ (2). Dividing equation (1) by equation (2) gives $\frac{e^{-kt_1}}{e^{-kt_2}} = \frac{A Q_1}{BQ_1} \cdot \frac{BQ_2}{A Q_2}$, so $e^{k(t_2 t_1)} = \frac{Q_2(A Q_1)}{Q_1(A Q_2)}$, $k(t_2 t_1) = \ln \frac{Q_2(A Q_1)}{Q_1(A Q_2)}$, and $k = \frac{1}{t_2 t_1} \ln \frac{Q_2(A Q_1)}{Q_1(A Q_2)}$.
- 37. We use the result of Exercise 36 with $t_1 = 14$, $t_2 = 21$, A = 600, $Q_1 = 76$, and $Q_2 = 167$ to obtain $k = \frac{1}{21 14} \ln \left[\frac{167(600 76)}{76(600 167)} \right] \approx 0.14$.

38. a.
$$Q'(t) = Ce^{-Ae^{-kt}} \frac{d}{dt} \left(-Ae^{-kt} \right) = -ACe^{-Ae^{-kt}} \cdot e^{-kt} \left(-k \right) = ACke^{\left(-Ae^{-kt} - kt \right)}.$$

b.
$$Q''(t) = ACke^{(-Ae^{-kt}-kt)} \left[-k - Ae^{-kt} (-k) \right] = 0$$
, if $Ae^{-kt} = 1$, so $e^{-kt} = \frac{1}{A}$, $-kt = \ln \frac{1}{A}$, and $t = -\frac{1}{k} \ln \frac{1}{A} = \frac{1}{k} \ln A$. The sign diagram shows that $t = \frac{1}{k} \ln A$ is an inflection point, and so the growth is most rapid at this time.

c.
$$\lim_{t\to\infty} Q(t) = C$$
.

Using Technology

page 403

1. a.

b. T(0) = 666 million; $T(8) \approx 926.8$ million.

c. $T'(8) \approx 38.3 \text{ million/yr/yr.}$

3. a.

b. $\lim_{t \to \infty} N(t) = \lim_{t \to \infty} \left[-20(t+20)e^{-0.05t} + 400 \right]$ = 400,

so Starr will eventually sell 400,000 copies of Laser Beams.

6. a.

2. a.

b. T(t) = 120 when $t \approx 15.54$ min.

4. a.

b. $P(3) \approx 325$ million.

c. $P'(3) \approx 76.84$ million per 30 years.

b. R'(x) = 0 when $x \approx 3.68$.

- **b.** f(x) = 25 when $x \approx $35,038.78$ /yr.
- **c.** $\lim_{x \to 25,000^+} f(x) = \infty$. If Christine withdraws \$25,000/yr she will be withdrawing only the interest, and so the account will never be depleted.
- **d.** $\lim_{x \to \infty} f(x) = 0$. If Christine withdraws everything in her account, it is depleted immediately.

7. a.

b. The initial concentration is 0.

c.
$$C(10) \approx 0.237 \text{ g/cm}^3$$
.

d.
$$C(30) \approx 0.760 \text{ g/cm}^3$$
.

$$e. \lim_{t \to \infty} C(t) = 0.$$

8. a.
$$f(t) = \frac{26.71}{1 + 31.74e^{-0.24t}}$$

c. At midnight, the snowfall was accumulating at the rate of $f'(12) \approx 1.476$, or approximately 1.5 in/hr. At noon on February 7, it was accumulating at the rate of $f'(24) \approx 0.530$, or approximately 0.5 in/hr.

d. The inflection point is approximately (14.4, 13.4), so snow was accumulating at the greatest rate at about 2:24 A.M. on February 7. The rate of accumulation was $f'(14.4) \approx 1.60$, or approximately 1.6 in/hr.

CHAPTER 5

Concept Review Questions

page 405

1. power, 0, 1, exponential

2. a.
$$(-\infty, \infty)$$
, $(0, \infty)$

b.
$$(0, 1), (-\infty, \infty)$$

3. a.
$$(0, \infty), (-\infty, \infty), (1, 0)$$

b.
$$< 1, > 1$$

5. accumulated amount, principal, nominal interest rate, number of conversion periods, term

6.
$$\left(1 + \frac{r}{m}\right)^m - 1$$

8. a.
$$e^{f(x)} \cdot f'(x)$$

b.
$$\frac{f'(x)}{f(x)}$$

CHAPTER 5

Review Exercises

page 406

1.

2. If
$$\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$$
, then $\log_{2/3}\left(\frac{27}{8}\right) = -3$.

3.
$$16^{-3/4} = 0.125$$
 is equivalent to $-\frac{3}{4} = \log_{16} 0.125$.

4.
$$\log_4 (2x + 1) = 2$$
, $(2x + 1) = 4^2 = 16$, $2x = 15$, and so $x = \frac{15}{2}$.

$$\left(\frac{1}{2}\right)^x = \frac{1}{2^x} = 2^{-x}$$
, so the two graphs are the same.

5.
$$\ln(x-1) + \ln 4 = \ln(2x+4) - \ln 2$$
, so $\ln(x-1) - \ln(2x+4) = -\ln 2 - \ln 4 = -(\ln 2 + \ln 4)$, $\ln\left(\frac{x-1}{2x+4}\right) = -\ln 8 = \ln\frac{1}{8}$, $\left(\frac{x-1}{2x+4}\right) = \frac{1}{8}$, $8x-8=2x+4$, $6x=12$, and so $x=2$. Check: LHS = $\ln(2-1) + \ln 4 = \ln 4$; RHS = $\ln(4+4) - \ln 2 = \ln 8 - \ln 2 = \ln\frac{8}{2} = \ln 4$.

6.
$$\ln 30 = \ln (2 \cdot 3 \cdot 5) = \ln 2 + \ln 3 + \ln 5 = x + y + z$$
.

7.
$$\ln 3.6 = \ln \frac{36}{10} = \ln 36 - \ln 10 = \ln 6^2 - \ln (2 \cdot 5) = 2 \ln 6 - \ln 2 - \ln 5 = 2 (\ln 2 + \ln 3) - \ln 2 - \ln 5$$

= $2 (x + y) - x - z = x + 2y - z$.

8.
$$\ln 75 = \ln (3 \cdot 5^2) = \ln 3 + 2 \ln 5 = y + 2z$$
.

11. a. Using Formula (6) with
$$P = 10,000, r = 0.06, m = 365$$
 and $t = 2$, we have $A = 10,000 \left(1 + \frac{0.06}{365}\right)^{365(2)} = 11,274.86$, or \$11,274.86.

b. Using Formula (10) with
$$P = 10,000$$
, $r = 0.06$, and $t = 2$, we have $A = 10,000e^{0.06(2)} = 11,274.97$, or \$11,274.97.

- 13. Using Formula (6) with A = 10,000, P = 15,000, r = 0.06, and m = 4, we have $A = 10,000 \left(1 + \frac{0.06}{4}\right)^{4t} = 15,000$, or $\left(1 + \frac{0.06}{4}\right)^{4t} = 1.5$. Solving for t, we have $4t \ln{(1.015)} = \ln{1.5}$, so $t = \frac{\ln{1.5}}{4 \ln{1.015}} \approx 6.808$, or approximately 6.8 years.
- 14. Using Formula (7) to compute the effective rate of interest with r=0.08 and m=4, we have $r_{\rm eff}=\left(1+\frac{r}{m}\right)^m-1$, or $0.08=\left(1+\frac{r}{4}\right)^4-1$. Solving for r, we have $\left(1+\frac{r}{4}\right)^4=1.08$, $\frac{r}{4}=1.08^{1/4}-1$, and so $r=4\left[(1.08)^{1/4}-1\right]\approx 0.0777$, or approximately 7.77%/yr.

15.
$$f(x) = xe^{2x}$$
, so $f'(x) = e^{2x} + xe^{2x}$ (2) = $(1 + 2x)e^{2x}$.

16.
$$f(t) = \sqrt{t}e^{t} + t$$
, so $f'(t) = \frac{1}{2}t^{-1/2}e^{t} + t^{1/2}e^{t} + 1 = \frac{e^{t}}{2\sqrt{t}} + \sqrt{t}e^{t} + 1$.

17.
$$g(t) = \sqrt{t}e^{-2t}$$
, so $g'(t) = \frac{1}{2}t^{-1/2}e^{-2t} + \sqrt{t}e^{-2t}$ (-2) $= \frac{1-4t}{2\sqrt{t}e^{2t}}$.

18.
$$g(x) = e^x (1 + x^2)^{1/2}$$
, so
$$g'(x) = e^x \frac{d}{dx} (1 + x^2)^{1/2} + (1 + x^2)^{1/2} \frac{d}{dx} e^x = e^x \frac{1}{2} (1 + x^2)^{-1/2} (2x) + (1 + x^2)^{1/2} e^x$$
$$= e^x (1 + x^2)^{-1/2} (x + 1 + x^2) = \frac{e^x (x^2 + x + 1)}{\sqrt{1 + x^2}}.$$

19.
$$y = \frac{e^{2x}}{1 + e^{-2x}}$$
, so $y' = \frac{\left(1 + e^{-2x}\right)e^{2x}(2) - e^{2x} \cdot e^{-2x}(-2)}{\left(1 + e^{-2x}\right)^2} = \frac{2\left(e^{2x} + 2\right)}{\left(1 + e^{-2x}\right)^2}$.

20.
$$f(x) = e^{2x^2 - 1}$$
, so $f'(x) = e^{2x^2 - 1} (4x) = 4xe^{2x^2 - 1}$

21.
$$f(x) = xe^{-x^2}$$
, so $f'(x) = e^{-x^2} + xe^{-x^2}(-2x) = (1 - 2x^2)e^{-x^2}$.

22.
$$g(x) = (1 + e^{2x})^{3/2}$$
, so $g'(x) = \frac{3}{2} (1 + e^{2x})^{1/2} \cdot e^{2x} (2) = 3e^{2x} (1 + e^{2x})^{1/2}$

23.
$$f(x) = x^2 e^x + e^x$$
, so $f'(x) = 2xe^x + x^2 e^x + e^x = (x^2 + 2x + 1)e^x = (x + 1)^2 e^x$.

24.
$$g(t) = t \ln t$$
, so $g'(t) = \ln t + t \left(\frac{1}{t}\right) = \ln t + 1$.

25.
$$f(x) = \ln(e^{x^2} + 1)$$
, so $f'(x) = \frac{e^{x^2}(2x)}{e^{x^2} + 1} = \frac{2xe^{x^2}}{e^{x^2} + 1}$.

26.
$$f(x) = \frac{x}{\ln x}$$
, so $f'(x) = \frac{\ln x \frac{d}{dx} x - x \frac{d}{dx} \ln x}{(\ln x)^2} = \frac{\ln x - x \cdot \frac{1}{x}}{(\ln x)^2} = \frac{\ln x - 1}{(\ln x)^2}$.

27.
$$f(x) = \frac{\ln x}{x+1}$$
, so $f'(x) = \frac{(x+1)\left(\frac{1}{x}\right) - \ln x}{(x+1)^2} = \frac{1 + \frac{1}{x} - \ln x}{(x+1)^2} = \frac{x - x \ln x + 1}{x(x+1)^2}$.

28.
$$y = (x + 1) e^x$$
, so $y' = e^x + (x + 1) e^x = (x + 2) e^x$

29.
$$y = \ln(e^{4x} + 3)$$
, so $y' = \frac{e^{4x}(4)}{e^{4x} + 3} = \frac{4e^{4x}}{e^{4x} + 3}$.

30.
$$f(r) = \frac{re^r}{1+r^2}$$
, so $f'(r) = \frac{\left(1+r^2\right)\left(e^r+re^r\right)-re^r\left(2r\right)}{\left(1+r^2\right)^2} = \frac{\left(r^3-r^2+r+1\right)e^r}{\left(1+r^2\right)^2}$.

31.
$$f(x) = \frac{\ln x}{1 + e^x}$$
, so

$$f'(x) = \frac{(1+e^x)\frac{d}{dx}\ln x - \ln x\frac{d}{dx}(1+e^x)}{(1+e^x)^2} = \frac{(1+e^x)\left(\frac{1}{x}\right) - (\ln x)e^x}{(1+e^x)^2} = \frac{1+e^x - xe^x \ln x}{x(1+e^x)^2}$$
$$= \frac{1+e^x(1-x\ln x)}{x(1+e^x)^2}.$$

32.
$$g(x) = \frac{e^{x^2}}{1 + \ln x}$$
, so $g'(x) = \frac{(1 + \ln x)e^{x^2}(2x) - e^{x^2}(\frac{1}{x})}{(1 + \ln x)^2} = \frac{(2x^2 + 2x^2 \ln x - 1)e^{x^2}}{x(1 + \ln x)^2}$.

33.
$$y = \ln(3x+1)$$
, so $y' = \frac{3}{3x+1}$ and $y'' = 3\frac{d}{dx}(3x+1)^{-1} = -3(3x+1)^{-2}(3) = -\frac{9}{(3x+1)^2}$.

34.
$$y = x \ln x$$
, so $y' = \ln x + x \left(\frac{1}{x}\right) = \ln x + 1$ and $y'' = \frac{1}{x}$.

35.
$$h'(x) = g'(f(x)) f'(x)$$
. But $g'(x) = 1 - \frac{1}{x^2}$ and $f'(x) = e^x$, so $f(0) = e^0 = 1$ and $f'(0) = e^0 = 1$. Therefore, $h'(0) = g'(f(0)) f'(0) = g'(1) f'(0) = 0 \cdot 1 = 0$.

36.
$$h'(1) = g'(f(1)) f'(1)$$
 by the Chain Rule. Now $g'(x) = \frac{(x-1)-(x+1)}{(x-1)^2} = -\frac{2}{(x-1)^2}$, $f'(x) = \frac{1}{x}$, and $f(1) = 0$, so $h'(1) = -\frac{2}{(-1)^2} \cdot 1 = -2$.

37.
$$y = (2x^3 + 1)(x^2 + 2)^3$$
, so $\ln y = \ln(2x^3 + 1) + 3\ln(x^2 + 2)$,
$$\frac{y'}{y} = \frac{6x^2}{2x^3 + 1} + \frac{3(2x)}{x^2 + 2} = \frac{6x^2(x^2 + 2) + 6x(2x^3 + 1)}{(2x^3 + 1)(x^2 + 2)} = \frac{6x^4 + 12x^2 + 12x^4 + 6x}{(2x^3 + 1)(x^2 + 2)}$$

$$= \frac{18x^4 + 12x^2 + 6x}{(2x^3 + 1)(x^2 + 2)},$$

and so
$$y' = 6x (3x^3 + 2x + 1) (x^2 + 2)^2$$
.

38.
$$f(x) = \frac{x(x^2 - 2)^2}{x - 1}$$
, so $\ln f(x) = \ln x + 2\ln(x^2 - 2) - \ln(x - 1)$. Thus,

$$\frac{f'(x)}{f(x)} = \frac{1}{x} + \frac{2(2x)}{x^2 - 2} - \frac{1}{x - 1} = \frac{(x^2 - 2)(x - 1) + 4x^2(x - 1) - x(x^2 - 2)}{x(x - 1)(x^2 - 2)} = \frac{4x^3 - 5x^2 + 2}{x(x - 1)(x^2 - 2)}$$
, and so
$$f'(x) = \frac{4x^3 - 5x^2 + 2}{x(x - 1)(x^2 - 2)} \frac{x(x^2 - 2)^2}{x - 1} = \frac{(4x^3 - 5x^2 + 2)(x^2 - 2)}{(x - 1)^2}.$$

- 39. $y = e^{-2x}$, so $y' = -2e^{-2x}$. This gives the slope of the tangent line to the graph of $y = e^{-2x}$ at any point (x, y). In particular, the slope of the tangent line at $(1, e^{-2})$ is $y'(1) = -2e^{-2}$. The required equation is $y e^{-2} = -2e^{-2}(x 1)$, or $y = \frac{1}{e^2}(-2x + 3)$.
- **40.** $y = xe^{-x}$, so $y' = e^{-x} + xe^{-x}$ (-1) = (1 x) e^{-x} . The slope of the tangent line at (1, e^{-1}) is 0. Therefore, an equation of the tangent line is y = 1/e.
- **41.** $f(x) = xe^{-2x}$. We first gather the following information on f.
 - 1. The domain of f is $(-\infty, \infty)$.
 - 2. Setting x = 0 gives 0 as the y-intercept.
 - 3. $\lim_{x \to -\infty} xe^{-2x} = -\infty$ and $\lim_{x \to \infty} xe^{-2x} = 0$.
 - 4. The results of part 3 show that y = 0 is a horizontal asymptote.

 - 6. The results of part 5 show that $(\frac{1}{2}, \frac{1}{2}e^{-1})$ is a relative maximum.
 - 7. $f''(x) = -2e^{-2x} + (1-2x)e^{-2x}$ (-2) = 4 (x 1) $e^{-2x} = 0$ if x = 1. The sign diagram of f'' shows that the graph of f is concave downward on $(-\infty, 1)$ and concave upward on $(1, \infty)$.

8. f has an inflection point at $(1, 1/e^2)$.

- **42.** $f(x) = x^2 \ln x$. We first gather the following information on f.
 - 1. The domain of f is $(0, \infty)$.
 - 2. There is no y-intercept.
 - 3. $\lim_{x \to \infty} (x^2 \ln x) = \infty$.
 - 4. There is no asymptote.
 - 5. $f'(x) = 2x \frac{1}{x} = \frac{2x^2 1}{x}$. Setting f'(x) = 0 gives $x = \pm \frac{\sqrt{2}}{2}$. We reject the negative root, so $x = \frac{\sqrt{2}}{2}$ is a critical point of f. The sign diagram of f' shows that f is - 0 + + + + sign of f' decreasing on $\left(0, \frac{\sqrt{2}}{2}\right)$ and increasing on $\left(\frac{\sqrt{2}}{2}, \infty\right)$.