11. a.

- **b.** 0.08 g/cm^3 .
- $c. 0.12 \text{ g/cm}^3.$
- **d.** 0.2 g/cm^3

12. a.

b. The graph confirms the results of Exercise 48.

13. a.

- b. 20 seconds.
- c. 35.1 seconds.

14. a. Using ExpReg we find

$$f(x) = 94.48(1.221^x) = 94.48e^{0.1997x}$$
.

b.

5.2 Logarithmic Functions

Concept Questions

page 351

- 1. a. $y = \log_b x$ if and only if $x = b^y$.
 - **b.** $f(x) = \log_b x$, b > 0, $b \neq 1$. Its domain is $(0, \infty)$.
- **2.** a. $\log_b x$ has domain $(0, \infty)$ and range $(-\infty, \infty)$.
 - **b.** Its x-intercept is 1.
 - **c.** It is continuous on $(0, \infty)$.
 - **d.** It is increasing on $(0, \infty)$ if b > 1 and decreasing on $(0, \infty)$ if b < 1.
- 3. a. $e^{\ln x} = x$.

- **b.** $\ln e^{x} = x$.
- **4.** No. The domain of f is $(-\infty, \infty)$, whereas the domain of g is $(0, \infty)$.

Exercises

page 351

- 1. $\log_2 64 = 6$.
- **2.** $\log_3 243 = 5$.
- 3. $\log_4 \frac{1}{16} = -2$. 4. $\log_5 \frac{1}{125} = -3$.

- 5. $\log_{1/3} \frac{1}{3} = 1$.
- **6.** $\log_{1/2} 16 = -4$.
- 7. $\log_{32} 16 = \frac{4}{5}$. 8. $\log_{81} 27 = \frac{3}{4}$.

9. $\log_{10} 0.001 = -3$.

10. $\log_{16} 0.5 = -\frac{1}{4}$.

		•		

11.
$$\log 12 = \log 4 \times 3 = \log 4 + \log 3 = 0.6021 + 0.4771 = 1.0792$$
.

12.
$$\log \frac{3}{4} = \log 3 - \log 4 = 0.4771 - 0.6021 = -0.125$$
.

13.
$$\log 16 = \log 4^2 = 2 \log 4 = 2 (0.6021) = 1.2042.$$

14.
$$\log \sqrt{3} = \log 3^{1/2} = \frac{1}{2} \log 3 = \frac{1}{2} (0.4771) = 0.2386.$$

15.
$$\log 48 = \log (3 \cdot 4^2) = \log 3 + 2 \log 4 = 0.4771 + 2 (0.6021) = 1.6813.$$

16.
$$\log \frac{1}{300} = \log 1 - \log 300 = -\log 300 = -\log (3 \cdot 100) = -(\log 3 + \log 100) = -(\log 3 + 2 \log 10)$$

= $-(\log 3 + 2) \approx -2.4771$.

17.
$$2 \ln a + 3 \ln b = \ln a^2 b^3$$
.

18.
$$\frac{1}{2} \ln x + 2 \ln y - 3 \ln z = \ln \frac{x^{1/2} y^2}{3z} = \ln \frac{\sqrt{x} y^2}{3z}$$
.

19.
$$\ln 3 + \frac{1}{2} \ln x + \ln y - \frac{1}{3} \ln z = \ln \frac{3\sqrt{x}y}{\sqrt[3]{z}}$$
.

20.
$$\ln 2 + \frac{1}{2} \ln (x+1) - 2 \ln (1+\sqrt{x}) = \ln \frac{2(x+1)^{1/2}}{(1+\sqrt{x})^2}$$
.

21.
$$\log x (x+1)^4 = \log x + \log (x+1)^4 = \log x + 4 \log (x+1)$$
.

22.
$$\log x (x^2 + 1)^{-1/2} = \log x - \frac{1}{2} \log (x^2 + 1)$$
.

23.
$$\log \frac{\sqrt{x+1}}{x^2+1} = \log (x+1)^{1/2} - \log (x^2+1) = \frac{1}{2} \log (x+1) - \log (x^2+1)$$
.

24.
$$\ln \frac{e^x}{1+e^x} = x - \ln(1+e^x)$$
.

25.
$$\ln x e^{-x^2} = \ln x - x^2$$
.

26.
$$\ln x (x + 1) (x + 2) = \ln x + \ln (x + 1) + \ln (x + 2)$$
.

27.
$$\ln\left(\frac{x^{1/2}}{x^2\sqrt{1+x^2}}\right) = \ln x^{1/2} - \ln x^2 - \ln\left(1+x^2\right)^{1/2} = \frac{1}{2}\ln x - 2\ln x - \frac{1}{2}\ln\left(1+x^2\right) = -\frac{3}{2}\ln x - \frac{1}{2}\ln\left(1+x^2\right).$$

28.
$$\ln \frac{x^2}{\sqrt{x}(1+x)^2} = 2\ln x - \frac{1}{2}\ln x - 2\ln(1+x) = \frac{3}{2}\ln x - 2\ln(1+x).$$

		•		
			,	

29.
$$y = \log_3 x$$
.

30.
$$y = \log_{1/3} x$$
.

31.
$$y = \ln 2x$$
.

32.
$$y = \ln \frac{1}{2}x$$
.

33.
$$y = 2^x$$
 and $y = \log_2 x$.

34.
$$y = e^{3x}$$
 and $y = \frac{1}{3} \ln x$.

35.
$$e^{0.4t} = 8$$
, so $0.4t \ln e = \ln 8$ and thus $0.4t = \ln 8$ because $\ln e = 1$. Therefore, $t = \frac{\ln 8}{0.4} \approx 5.1986$.

36.
$$\frac{1}{3}e^{-3t} = 0.9$$
, $e^{-3t} = 2.7$. Taking the logarithm, we have $-3t \ln e = \ln 2.7$, so $t = -\frac{\ln 2.7}{3} \approx -0.3311$.

37.
$$5e^{-2t} = 6$$
, so $e^{-2t} = \frac{6}{5} = 1.2$. Taking the logarithm, we have $-2t \ln e = \ln 1.2$, so $t = -\frac{\ln 1.2}{2} \approx -0.0912$.

38.
$$4e^{t-1} = 4$$
, so $e^{t-1} = 1$, $\ln e^{t-1} = \ln 1$, $(t-1) \ln e = 0$, and $t = 1$.

39.
$$2e^{-0.2t} - 4 = 6$$
, so $2e^{-0.2t} = 10$. Taking the logarithm on both sides of this last equation, we have $\ln e^{-0.2t} = \ln 5$, $-0.2t \ln e = \ln 5$, $-0.2t = \ln 5$, and and $t = -\frac{\ln 5}{0.2} \approx -8.0472$.

40.
$$12 - e^{0.4t} = 3$$
, $e^{0.4t} = 9$, $\ln e^{0.4t} = \ln 9$, $0.4t \ln e = \ln 9$, and $0.4t = \ln 9$, so $t = \frac{\ln 9}{0.4} \approx 5.4931$.

41.
$$\frac{50}{1+4e^{0.2t}} = 20$$
, so $1+4e^{0.2t} = \frac{50}{20} = 2.5$, $4e^{0.2t} = 1.5$, $e^{0.2t} = \frac{1.5}{4} = 0.375$, $\ln e^{0.2t} = \ln 0.375$, and $0.2t = \ln 0.375$. Thus, $t = \frac{\ln 0.375}{0.2} \approx -4.9041$.

42.
$$\frac{200}{1+3e^{-0.3t}} = 100$$
, so $1+3e^{-0.3t} = \frac{200}{100} = 2$, $3e^{-0.3t} = 1$, $e^{-0.3t} = \frac{1}{3}$, and $\ln e^{-0.3t} = \ln \frac{1}{3} = \ln 1 - \ln 3 = -\ln 3$.
Thus, $-0.3t \ln e = -\ln 3$, so $0.3t = \ln 3$. Therefore, $t = \frac{\ln 3}{0.3} \approx 3.6620$.

43. Taking logarithms of both sides, we obtain
$$\ln A = \ln B e^{-t/2}$$
, $\ln A = \ln B + \ln e^{-t/2}$, and $\ln A - \ln B = -\frac{t}{2} \ln e$, so $\ln \frac{A}{B} = -\frac{t}{2}$ and $t = -2 \ln \frac{A}{B} = 2 \ln \frac{B}{A}$.

		•	
•			

44.
$$\frac{A}{1+Be^{t/2}}=C$$
, $A=C+BCe^{t/2}$, $A-C=BCe^{t/2}$, $\frac{A-C}{BC}=e^{t/2}$, and $\frac{t}{2}=\ln\frac{A-C}{BC}$, so $t=2\ln\left(\frac{A-C}{BC}\right)$.

- **45.** f(1) = 2, so a + b(0) = 2. Thus, a = 2. Therefore, $f(x) = 2 + b \ln x$. We calculate f(2) = 4, so $2 + b \ln 2 = 4$. Solving for b, we obtain $b = \frac{2}{\ln 2} \approx 2.8854$, so $f(x) = 2 + 2.8854 \ln x$.
- **46. a.** The average life expectancy in 1907 was W(1) = 49.9 years.
 - **b.** The average life expectancy in 2027 will be $W(7) = 49.9 + 17.1 \ln 7 \approx 83.2$ years.
- 47. $p(x) = 19.4 \ln x + 18$. For a child weighing 92 lb, we find $p(92) = 19.4 \ln 92 + 18 \approx 105.7$, or approximately 106 millimeters of mercury.
- **48.** a. $5 = \log \frac{I}{I_0}$, so $\frac{I}{I_0} = 10^5$ and $I = 10^5 I_0 = 100,000 I_0$.
 - **b.** $8 = \log \frac{I}{I_0}$, from which we find $I = 10^8 I_0$. Thus, it is 1000 times greater.
 - **c.** $7.0 = \log \frac{I}{I_0}$ gives $I = 10^{7.0} I_0$. So it is $\frac{10^{7.0}}{10^5} = 10^2$, or 100 times greater than one with magnitude 5.
- **49.** a. $30 = 10 \log \frac{I}{I_0}$, so $3 = \log \frac{I}{I_0}$, and $\frac{I}{I_0} = 10^3 = 1000$. Thus, $I = 1000I_0$.
 - **b.** When D = 80, $I = 10^8 I_0$ and when D = 30, $I = 10^3 I_0$. Therefore, an 80-decibel sound is $10^8/10^3 = 10^5 = 100,000$ times louder than a 30-decibel sound.
 - **c.** It is $10^{15}/10^8 = 10^7 = 10,000,000$ times louder.
- **50.** We solve the equation $29.92e^{-0.2x} = 20$, obtaining $e^{-0.2x} = \frac{20}{29.92} = 0.6684$, $-0.2x = \ln 0.6684$, and $x = -\frac{\ln 0.6684}{0.2} \approx 2.01$. Thus, the balloonist's altitude is 2.01 miles.
- 51. a. The temperature when it was first poured is given by $T(0) = 70 + 100e^0 = 170$, or 170° F.
 - **b.** We solve the equation $70 + 100e^{-0.0446t} = 120$; $100e^{-0.0446t} = 50$, obtaining $e^{-0.0446t} = \frac{50}{100} = \frac{1}{2}$, $\ln e^{-0.0446t} = \ln \frac{1}{2} = \ln 1 \ln 2 = -\ln 2$, $-0.0446t = -\ln 2$, and so $t = \frac{\ln 2}{0.0446} \approx 15.54$. Thus, it will take approximately 15.54 minutes.
- **52.** We solve the equation $\frac{160}{1 + 240e^{-0.2t}} = 80$ for t, obtaining $1 + 240e^{-0.2t} = \frac{160}{80}$, $240e^{-0.2t} = 2 1 = 1$, $e^{-0.2t} = \frac{1}{240}$, $-0.2t = \ln \frac{1}{240}$, and $t = -\frac{1}{0.2} \ln \frac{1}{240} \approx 27.40$, or approximately 27.4 years old.
- 53. When f(t) = 40, we have $\frac{46.5}{1 + 2.324e^{-0.05113t}} = 40$, so $1 + 2.324e^{-0.05113t} = \frac{46.5}{40}$, $2.324e^{-0.05113t} = \frac{46.5}{40} 1 = 0.1625$, $e^{-0.05113t} = \frac{0.1625}{2.324}$, $-0.05113t = \ln\left(\frac{0.1625}{2.324}\right)$, and $t \approx 52.03$. Thus, the percentage of obese adults will reach 40% around 2022.

	*			

- 54. We solve the equation $200 \left(1 0.956e^{-0.18t}\right) = 140$ for t, obtaining $1 0.956e^{-0.18t} = \frac{140}{200} = 0.7$, $-0.956e^{-0.18t} = 0.7 1 = -0.3$, $e^{-0.18t} = \frac{0.3}{0.956}$, $-0.18t = \ln\left(\frac{0.3}{0.956}\right)$, and finally $t = -\frac{\ln\left(\frac{0.3}{0.956}\right)}{0.18} \approx 6.43875$. Thus, it is approximately 6.4 years old.
- **55. a.** We solve the equation $0.08 + 0.12e^{-0.02t} = 0.18$, obtaining $0.12e^{-0.02t} = 0.1$, $e^{-0.02t} = \frac{0.1}{0.12} = \frac{1}{1.2}$, $\ln e^{-0.02t} = \ln \frac{1}{1.2} = \ln 1 \ln 1.2 = -\ln 1.2$, $-0.02t = -\ln 1.2$, and $t = \frac{\ln 1.2}{0.02} \approx 9.116$, or approximately 9.1 seconds.
 - **b.** We solve the equation $0.08 + 0.12e^{-0.02t} = 0.16$, obtaining $0.12e^{-0.02t} = 0.08$, $e^{-0.02t} = \frac{0.08}{0.12} = \frac{2}{3}$, $-0.02t = \ln \frac{2}{3}$, and $t = -\frac{1}{0.02} \ln \frac{2}{3} \approx 20.2733$, or approximately 20.3 seconds.
- **56.** a. We solve the equation $0.08 \left(1 e^{-0.02t}\right) = 0.02$, obtaining $1 e^{-0.02t} = \frac{0.02}{0.08} = \frac{1}{4}$, $-e^{-0.02t} = \frac{1}{4} 1 = -\frac{3}{4}$, $e^{-0.02t} = \frac{3}{4}$, $\ln e^{-0.02t} = \ln \frac{3}{4}$, $-0.02t = \ln \frac{3}{4}$, and so $t \approx 14.38$, or 14.38 seconds.
 - **b.** $1 e^{-0.02t} = \frac{0.04}{0.08}$, so $-e^{-0.02t} = \frac{1}{2} 1 = -\frac{1}{2}$, $e^{-0.02t} = 0.5$, and $t = -\frac{\ln 0.5}{0.02} \approx 34.66$, or 34.66 seconds.
- 57. With $T_0 = 70$, $T_1 = 98.6$, and T = 80, we have $80 = 70 + (98.6 70)(0.97)^t$, so $28.6(0.97)^t = 10$ and $(0.97)^t = 0.34965$. Taking logarithms, we have $\ln(0.97)^t = \ln 0.34965$, or $t = \frac{\ln 0.34965}{\ln 0.97} \approx 34.50$. Thus, he was killed $34\frac{1}{2}$ hours earlier, at 1:30 p.m.
- **58. a.** Solving the given demand equation $p = 50 \ln \frac{50}{x}$ for x in terms of p, we find $\ln \left(\frac{50}{x}\right) = \frac{p}{50}$, so $\frac{50}{x} = e^{p/50}$ and $x = f(p) = 50e^{-p/50} = 50e^{-0.02p}$ for p > 0. Next, we find $f'(p) = -e^{-0.02p}$, and so $E(p) = -\frac{pf'(p)}{f(p)} = \frac{pe^{-0.02p}}{50e^{-0.02p}} = \frac{p}{50}$. Now E(p) < 1 if and only if $\frac{p}{50} < 1$ or p < 50, and similarly E(p) = 1 when p = 50 and f(p) > 1 if p > 50. Thus, demand is inelastic if 0 , unitary if <math>p = 50, and elastic if p > 50.
 - **b.** Since demand is unitary at p = 50, we see that at that price, a slight increase in the unit price will not affect revenue.
- **59.** False. Take x = e. Then $(\ln e)^3 = 1^3 = 1 \neq 3 \ln e = 3$.
- **60.** False. Take a = b = 1. Then $\ln(a + b) = \ln(1 + 1) = \ln 2 \neq \ln a + \ln b = \ln 1 + \ln 1 = 0$.
- **61.** True. $e^{\ln b} = b$ and $\ln e^b = b$ as well.
- **62.** False. Take a = 2e and b = e. Then $\ln a \ln b = \ln 2e \ln e = \ln 2 + \ln e \ln e = \ln 2$, But $\ln (a b) = \ln (2e e) = \ln e = 1$.
- **63.** True. $g(x) = \ln x$ is continuous and greater than zero on $(1, \infty)$. Therefore, $f(x) = \frac{1}{\ln x}$ is continuous on $(1, \infty)$.
- **64.** True. If $a = \log_2 3$, then $3 = 2^a$ and $\ln 3 = \ln 2^a = a \ln 2$, so $a = \frac{\ln 3}{\ln 2}$. Similarly, if $b = \log_3 2$, then $2 = 3^b$, $\ln 2 = b \ln 3$, and $b = \frac{\ln 2}{\ln 3}$. Therefore, $ab = (\log_2 3) (\log_3 2) = \frac{\ln 3}{\ln 2} \cdot \frac{\ln 2}{\ln 3} = 1$.

		*
a.		